U
— EDGEWOOD

U.S. ARMY CHEMICAL AND BIOLOGICAL DEFENSE COMMAND

ERDEC-TR-329

LIGHT SCATTERING FROM NONCONCENTRIC SPHERES

Dat Ngo
Steve Christesen

RESEARCH AND TECHNOLOGY DIRECTORATE
Gorden Videen

U.S. ARMY RESEARCH LABORATORY
White Sands Missile Range, NM 88002-5001

19960701 089

Approved for public r_elease; distribution is unlimited.

SCI
j“ﬂk‘i~E/NI/4 ‘
| DEFENDIMyg

Aberdeen Proving Ground, MD 21010-5423

D0 onALDry varopaomrm
Liv QUALETY DNEPHECTED 1

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorizing documents.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

gathernng and maintaining the gata needed, and completing and review:ng the coliection of intformation Send comments r

collection o¢ intormation, including suggestions for reducing this burgen. to Washington Headauarters Services, Dnredout:?m information
Davis Highway, Suite 1204, Arhngton, VA 22202-4302. and 10 the Otfice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. OC 205C3

Public repont nG burcen for this ccliecuon ot information 1 estimated to average ! hour per resporse. including the time tor reviewng INstructions, searcning ex'stng 4ata soures
arding this burden estimate or any other aspect of this
Operations and Reports. 1215 JeHerso

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

Final, 93 Sep - 96 Apr

996 May _
4. TITLE AND SUBTITLE

Light Scattering from Nonconcentric Spheres

S. FUNDING NUMBERS

PR-10161102A71A

6. AUTHOR(S)
Ngo, Dat, Christesen, Steve (ERDEC); Videen, Gordon (ARL -
WSMR Site)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DIR, ERDEC, ATTN: SCBRD-RTE, APG, MD 21010-5423
DIR, ARL, WSMR, NM 88002-5001

8. PERFORMING ORGANIZATION
REPORT NUMBER

ERDEC-TR-329

G. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Atmospheric aerosols often contain small inclusions of insoluble materi

derived using an extension of Mie theory. The boundary conditions at

vector harmonics emanating from the center of the other sphere.

examine the sensitivity of the scattering to various system parameters.

al which can affect remote

sensing techniques that rely on the scattering or fluorescence for detection, and identification.
Thus the exact solution for the scattering from a sphere with a nonconcentric spherical inclusion 1s

the surfaces of both spheres

are satisfied by representing the fields emanating from the center of one sphere as a summation of
The exact solution is shown to

reduce to the coated sphere solution if the inclusion and host spheres are concentric, and to the
Mie theory solution if the refractive indices of the inclusion and host are the same. We then

14. SUBJECT TERMS

Aerosol research Light scattering

15. NUMBER OF PAGES

78

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
prescribed by ANSI Std. 239-18
298-102

Blank

PREFACE

The work described in this report was authorized under
Project No. 10161102A71A, Smoke Technology. This work was
started in September 1993 and completed in April 1996.

The use of trade or manufacturers' names in this report does
not constitute an official endorsement of any commercial
products. This report may not be cited for purposes of
advertisement.

This report has been approved for release to the public.
Registered users should request additional copies from the
Defense Technical Information Center; unregistered users should
direct such requests to the National Technical Information

Center.

Acknowledgments

The authors would like to thank Ronald Pinnick and Peter
Chylek for their support and discussion. They would also like to
thank Roger Combs and Dennis Roser for helpful suggestions and
moral support.

Blank

CONTENTS

INTRODUCTION. . oottt e e e

THE SOLUTION . ..ot e et

('S

w

2.1 HOSt Sphere. . ..o
2.2 Inclusion SPhereo
2.3 Fields Interior tothe Host Sphere i
2.4 Scattering Coefficients
2.5 Plane Wave EXpansionttt
2.6 The Scattering Amplitudes and Efficiencies.,

SPECIAL CASES. . .ottt e e e
3.1 Simplifications of Qand Q.
3.2 Mie ReQUCHION. . . o v ottt e e e e e e
3.3 Concentric Sphereso i

RESULTS AND DISCUSSIONS. . ..o
4.1 Comparison with Mie Theory.t
4.2 Comparison with Concentric Theoryo
4.3 Examination of Two Typesofinclusion.........o,

CONCLUSION. . ottt e e e e e

LITERATURE CITED. . ..ot

APPENDIX - NONCONCENTRIC SPHERE CODE

11
12
12
16
17
18

19
19
20
21

Wl

FIGURES
Geometry of the nonconcentric sphere scattering system
Physical representation of the fields upon the nonconcentric sphere system

Comparison of the scattering intensity using the Mie code and the
nONCONCENtric SPhere COAe. vttt

Extinction efficiencies as a function of separation distance between the two
sphere centers for two typesof Inclusion ol

Backscattering total intensity as a function of separation distance between
the two SPhere CENTEISottt e e

Extinction efficiencies as a function of incidentangle
Backscattering total intensity as a function of incidentangle.

Extinction efficiencies as a function of inclusion radius for four values of
the separation diStanceottt

Extinction efficiencies as a function of inclusion radius for three values of
theincidentangle i e

TABLES
Comparison with Mie scattering Outputttt ..

Comparison of nonconcentric with coated sphere theory.

LIGHT SCATTERING FROM NONCONCENTRIC SPHERES

1 INTRODUCTION

Atmospheric aerosols often contain small inclusions of insoluble material which can affect
their scattering properties. These inclusions can be found anywhere within the host aerosols.
Chemical and biological agents can also exist in the atmosphere as multi component aerosols.
For example, bacterial agents can be dispersed as a liquid suspension where the spore or cell 1s
embedded in a water droplet. In the 1950’s, the use of carrier dusts for disseminating chemical
agents was tested.[1],[2] Although unsuccessful, the goal of this work was to modify the physical
characteristics of the chemical agent by use of an inert dust as a carrier to obtain more efficient
aerosol dissemination. It is also assumed that any inclusion or encapsulation can directly affect
the optical properties of the aerosol, and hence its scattering characteristics. This influence has
consequences for remote sensing techniques that rely on the aerosol scattering or fluorescence
for detection and identification. Therefore, the purpose of this report is to show the theoretical
derivation of a host sphere containing one spherical inclusion arbitrarily located within the host.

Unti! recently. theoretical predictions of scattering for a host sphere containing a nonconcen-
trically positioned smaller sphere was not feasible. Most experimentalists had to be content with
the concentric sphere model,[3]—[5] i.e., the smaller sphere sharing the same origin as the host
sphere. Some made use of the T-matrix method [6]—[8] to examine a radially inhomogeneous
sphere, and some even dabbled with the effective medium approximations.[9] It was not until
Friedman and Russek [10] published the addition theorem for spherical waves that the solution
to the nonconcentric problem was even realizable. However, Friedman and Russek made some
errors in their derivations. Stein [11] (and later Cruzan [12]) found the errors and came up with
the correct translation addition theorem for spherical wave functions. After that, the solution was
attainable. Fikioris and Uzunoglu [13] were the first to obtain a mathematical expression for the
scattering of a nonconcentric sphere within a host sphere, followed by Borghese ez al.[14] Kirk
Fuller derived the relations for the same problem using an order of scattering approach.[15] In
the following pages we derive the general expressions for the scattering from a system composed
of a sphere containing a nonconcentric spherical inclusion.

2 THE SOLUTION

The scattering solution of a sphere containing many inclusions is difficult to solve, and even
more difficult to implement because of the limitation of present day computers. For this reason,
we choose a simple model having one spherical inclusion arbitrarily placed inside a larger sphere.

Figure 1. Geometry of the nonconcentric sphere scattering system. A host sphere of radius
a, and complex refractive index 711, is centered on the x93z, coordinate system. The inclusion
sphere of radius a, and complex refractive index m. is centered on the z,y-z2 coordinate system
at a position z; = 0. y; = 0. z; = d. The incident radiation is a plane wave traveling in the
r — = plane. oriented at angle a with respect to the z axis.

The geometry of the scatterer is shown in Figure 1. The larger sphere (the host) of radius a;
and refractive index m, completely encloses the smaller sphere (the inclusion) of radius a; and
refractive index m,. The center of the host sphere is situated on the z1,y1, 21 coordinate system.
The inclusion sphere is centered on the z2, y2. z2 coordinate system at a position z; = 0, y1 = 0.
z, = d. Since the inclusion sphere is centered on the z; axis, to make the solution completely
general, we require the incident radiation to impinge upon the system at an arbitrary angle o.. The
problem of a sphere within a sphere can be solved by simultaneously satisfying all the boundary
conditions at the surfaces of the two spheres.

Figure 2 shows the physical representation of the fields. Note that we use circular arcs to
represent spherical traveling waves (spherical Bessel functions of the 3rd and 4th kinds) and
parallel lines to represent plane waves. The boundary conditions at the surfaces of both spheres
are satisfied by representing the fields emanating from the center of one sphere as a summation
of vector harmonics emanating from the center of the other sphere. We use the vector spherical
harmonics which have the following form:

w4 | tm - g,
Mim; = 93'Linej_2£”’(krj)Pn (cosb;)e »o} _
% r (p) k d F)m 9 img;
Y5 | ?n ('r])d—e n (COS])6 ,
7
1 ot .
Ny = 75 hr?ﬁ”)(k’r‘j)n(n+1) ,:"(cos9]-)6"%}Jr
J

d - .
~z(")(kr-)) ZZ?P;”(cosé’j)e’m*’f} +
J

™_pm(cos ej)e""%} , (1)

: n
sin 6;

where the index j corresponds to the coordinate system used (j = 1,2) and z{P)(kr;) are the
spherical Bessel functions of the first, second, third, or fourth kind (p = 1,2.3,4). and

(2n + 1)(n —m)
2(n +m)!

P} (cosb;) = \s P (cos).)

where P™(cos§;) are the associated Legendre polynomials.

anm, bnm Cnm,dnm

Figure 2. Physical representation of the fields on the nonconcentric sphere system.

10

2.1 Host Sphere

We now examine the fields which strike the host sphere surface (j = 1). We consider
an arbitrary field incident on the system which can be expanded using the spherical Bessel
functions of the first kind, j,(kr;). We will examine the specific cases of plane waves polarized
perpendicular and parallel to the y axis later. The incident electric field may be expanded as

Eilnc = Z Z aan'Ellrlz,l + bﬂmNS'zerz,l' 3)

n=0m=-—n

Similarly. the scattered electric field may be expanded using the spherical Bessel functions of
the third kind. h{" (kry):

e n
3 3
E;ca = Z Z Cnm (1;,1 + dnmNEzr)n,l- 4)

n=0m=-—n

The fields near the boundary |d| < 7, < a; inside the sphere may be expanded into incoming
and outgoing spherical waves using spherical Bessel functions of the fourth kind h® (kyr;) and
Wird kind un: \h1l1)-

oc n) .
El = Z Z ean::z,l + fnmNS)n,l + Gnm (4711,1 + hnmNgﬂ)m,l' (5)

sph —
n=0m=-—n

The application of boundary conditions at the host sphere surface for the above three equations
yields two sets of equations:

Anmk1yn(kay) + Cnmklggl)(kal) = enmkg,(f)(klal) + gnmk§7(12)(k1al)~ (6)
Lty (k1) + CamE D (k) = €nm€) (k101) + gam&it” (kr01), (7
brmtn (k1) + dum€) (ka1) = famED (101) + Bom€P (k1a1). (®)

b0, (k1) + dumkr 650 (k1) = famk€ (K101) + hnmkEr® (Kra1), ©)

where ¥, (r) and £9(r) (q = 1,2) are the Riccati-Bessel functions defined by
Un(r) = rjn(r) and £P(r) = rh? (). (10)

and the primes denote derivatives with respect to the argument.

11

2.2 Inclusion Sphere

Next we examine the fields which strike the inclusion sphere surface (7 = 2). The fields
inside this sphere may be expressed using spherical Bessel functions of the first kind j, (kor2) :

mt - Z Z Pnm m2+qnmNnm2 (ll)

n=0m=-n

The fields near the boundary outside the sphere may be expressed into incoming and outgoing
spherical waves using spherical Bessel functions of the fourth kind h{?(k;ry) and third kind
hg) (k]?"z):

E?axt = Z Z T”mME?rZz.E + SnmN(S' 2+ tnTTanm 9 + u‘fl‘mNn'm 2- (12)

n=0m=-n

Applying boundary conditions at the sphere surface yields two sets of equations:

Prmk1Wn (ko) = TrmkoV (k1a2) + tamka (K1as), (13)
L L :,('I:'._’('Y_'\/ - ‘,"Ii’/LS]/(l)(‘I’Af‘Y:) -+ *.LMS:(Q)(\]‘ALN_‘,\ (]4\
GrmUn (k202) = Spm&V (k1ag) + Unm&? (Kk1a2). (15)

Gnmk1¥, (K202) = Spmka€l™ (k102) + Unmka€) (Kras). (16)

We can eliminate the interior field coefficients (p,,, and ¢,,) to find relationships for the exterior
field coefficients. After a little bit of algebra, we have:

k1€, (2)(11102)w (koag) — }125(2)(/1102)1#;(1\'202)

Tnm = = Qhtam. (17)
"°§n (klflz) i (keag) — e (kya2)t (koa2)
"2) e £2) (ke
S = U ly2§ (ItlaQ)Un(]\QQQ) 15(1)(1‘102)7# (2(12) . Qiunm’ (]8)
ki &) (kvao), (kaag) — kobn (K1a2)wn (kaaz)

where Q" and Q¢ are the Q factors which contain information about the inclusion sphere such
as its size and refractive index.

2.3 Fields Interior to the Host Sphere

The fields in the interior of the host sphere are expressed by equations 6-9, while the fields
exterior to the inclusion sphere are expressed by equations 17 and 18. At first glance, it is
tempting to merely equate those coefficients, but that would be a mistake since the vector
spherical harmonics expressed by those equations are centered about two different coordinate
systems. This is where the importance of the translational addition theorem comes into play.

12

Stein[12] and Cruzan[13] have derived translation addition theorems for vector spherical wave
functions which can be used to express the coefficients €nm, foms Gnm. and h,n,in terms of the
coefficients Tnm, Snpms tnm- and Un,.,. And the way we have set up our geometry for the scattering
system now comes in handy. Because we require that the inclusion be centered along the z-axis.
the two origins are separated only by a displacement in z. Hence, there is no rotation. Thus, for
a translation along the z axis with no rotation, the vector spherical harmonics are related by:

x

M, = > ATIME L+ BN (19)
n'=0
NG =Y BIME,, + AN (20)
n'=0
where q denotes the order of the spherical Bessel functions (g = 1,2.3.4). This relationship

is valid in the region where r > |d|. The translation coefficients A™9 and B2 are derived

elsewhere. [19] We note that the expressions are:

kid ‘ (n' —m+ 1) +m+1)
n"—rl\J 20+)20+ 3

49— olma) o,

kid | (n' —m)(n'+m) maq ‘
7 J o 3 1)@ —1) (1)

A 22
n'(n'+1) ™" (22)

(m.q) _

Bn.n’q -

The C\"% are scalar translation coefficients. Recursion expressions for these scalar coefficients

can be derived using the method of Bobbert and Vlieger.[17] The details are shown elsewhere.[19]
The necessary scalar translation coefficients are:

C8 = Von' + U (kid), (23)
C%, = —v2n" + Tjw(kid). (24)

1 2n + 3 [2n +1
(0,9) _ ' C(O’q,)
Cnira (n+1) \/2n’ +1 {n o —1 ™l +
12", +1 049 ' 2n+1 0.4
A7 bnoi — TR —QC ., . 2
n 2 — 1 Cﬂ—le'fl (n + 1) ! + 3Cn,n +1(: (25)

13

V(= m+ Dn+m)2n + DO = (0 —m 4+)+ m)@n’ + 1) —
' (0" —m+2)(n"—m+1)

k d C(n?:—l,q) _
1 \J (211’ + 3) nn'+1
k d I (n’+m)(n/+m _1)C(m—].q)
T ew—p e 9
and.
cimdh = ol (27)
From these equations. we see that
AT = A = AT = AT
B = B = B = BUL.
C(ms3) _ md) _ C("m,3) —_ m) (28)

n.n’ nn’ nn' nn'"

The advantage of expanding the interior fields of the host sphere in the third and fourth
kinds of spherical Bessel functions rather than the first and second kinds is that only one set
of translation coefficients need to be calculated. Using equations 19, 20, and substituting those
expressions into equation 12, we obtain

2 o (3 g (3) (m,3)ng (3
B, = 3 % {rnm [S ATIMEL |+ B ’Nn,;n.l]
n=0m=-n n'=0
o [z BUIME A::;?)Nggm]
n'=0
it [Z ATEOMY) L+ Bflt’,‘l’f’)Nfl‘onyl}
n'=0
> ., m.4) 4
+ Upm l:z B1(17,rrlz’4)M£3)m1 + A’EI,TII)Nil'in,lii } . (29)

n' =0

The field outside of the inclusion sphere is now expressed in terms of the vector spherical
harmonics of the host sphere. Therefore, it is now possible to equate equation 29 with equation
5. Looking only at the M) . we see that

i Z enmnMB =3 3 [rnm Z_:O AT+ Snm Y B,’[jn,} Mﬁl?:in. (30)

n=0m=-—n n=0m=-—n n'=0

14

Multiplying both sides of this equation by f Mff)*d% and using the orthogonality condition
(6ni6m; on the left hand side, and 6,+¢6,»; on the right hand side), we obtain

ZrmAm + 8n; BL;. (31)
n=0
which can be rewritten as
oc
= Z Trm A + Snim B - (32)
n'={

Continuing the same line of reasoning. we can show

o
- Z SnmAp n + Twm By o (33)
n'=0
X
= Z t“'mA;n’.n + Un/mBZ}_n. (34)
n'=0
and
oC
Bre = S w0 AT =40, B (35)
n'=0

These are the four magic equations which relate the coefficients in the two different coordinate
systems. Armed with these new expressions, it is now possible to replace one set of coefficients
with another.

Substituting equations 32 and 34 into equation 6 we have
Anmkiwn(kay) + c‘nmklfiln(k'al) = kfn,gl)(klal) Z TrimAp o + Snim B +
n’=0

k€ (kiar) Y twm Al + Unm Byl (36)
n'=0

Using equations 17 and 18 for ., and Sn'm. We can substitute those expressions into the above
equation to obtain

aanﬂ(ka'l) + C‘nmé(l) kafl = 7 Z tnm A [(2)(]91&1) + Q 6()(klal)]

1 pr=0

Untm Bl [s@(klaa + Q0 (kaan)] - (37)

Likewise, we can substitute equations 32 - 35 into equations 7 - 9 (and together with equations
17 and 18) to obtain the following set of simultaneous equations, which can be solved to yield

15

the scattering coeficients (c,,, and d,,,) or the internal field coefficients (¢,,, and u,,,) of the
host sphere:

Q¥ (kay) + Cam& (kay) Z trm AL ['(2)(k1a1)+Q;,§;(”(k1a])} +

n’=0

Unim By (67 (k1a1) + Q38 (kray)] (38)

bnmwn(kal) + dnmgfll)(kal) = Z tnm m [2)(k' a >+ Q 5(1 (I‘vlal)] +

n’'=0
Untm Ay [&f}(klal) +QuEN (hay)] (39)
bnmw (]101 + dnmgl(l)(}‘a = I Z ta/m Tr,Ln' {51,1(2)(}'3]@1) + Q;'g':?(l)(klal)] +
1 — B
u,,/mAr,nf (62 (k) + Q&1 (kyar) | (40)

2.4 Scattering Coefficients

The set of four equations (37 - 40) is the final product in our search for the scattering
coefTicients. We have four equations and four unknowns, the unknowns being ¢, dnm. tom.
and u,.,. The interior field coefficients inside the host sphere, t,,,,, and u,.,, (Which can also be
viewed as the exterior field coefficients of the inner sphere) may be calculated by eliminating
the scattering coefficients ¢,,, and d,,, in equations 37 - 40. Since all the elements comprising
the matrix in the solution are known except for the coefficients t,,, and u,,,, we can perform
an LU-decomposition to solve for those interior field coefficients. The matrix representation is:

ApmYn = Z tn’m :mn/] +un’mU«,(::'1)7 (41)
(m,2) (m.2;
n'm’)n - Z tn an n! + Un! mUnn' . (42)
n'=0
where
Yo = ky [0 (kay)¢ (kar) — ¥ (kar)ED (Ray)] (43)
Tt = AT (R (kay) [€2 (har) + Qe (k)|
~ki&! (kas) [57’1(2)(k101) + Q;f&(l)(klal)” ; (44)
16

T = B (k& (kay) [P (kiay) + Qe (kran)]
—keWM (k) [(kyar) + Q€ (hnan) |} (45)

Ut = B, (k6O (kay) [67 (krar) + Qg (kra)]
~k1€0 (ka) [€) (kray) + Q&M (haa) |} (46)

v = A7k E0 (kay) [€2(kar) + Q5 é (kiay)]

— ke (kay) [E (Raar) + QN (Kaan) | (47)

The scattering coefficients, ¢,,, and d,, may then be calculated using equations 37 - 40.
Once we know the scattering coefficients, we can determine the scattering matrix elements and
other parameters associated with the scatter.

2.5 Plane Wave Expansion

Since the small sphere is centered on the z axis, for the solution to be completely general,
the incident plane wave must be in an arbitrary direction in the x-z plane. Two plane waves must
be considered in order to account for each polarization state. When the plane wave is polarized
perpendicular to the x-z plane (TE), the coefficients are found to be [18]:

j?l

_ TE __ _ pm—+1/ .
Upm = App = D) {\/(n m)(n+m+ 1)P"" (cosa)
~ /(n_m+1)(n+m)P;"-1(cosa)J, (48)
2nt2 9 .
= amiDda'" (cosa). (49)

(n—m-l-l)(n —m+2) o
J (2n +1)(2n + 3) P (cosa)

jre _ T2+ 1)
"m o n(n+1)

bn m

(n+m+1)(n+m+2)
\ (2n +1)(2n +3)

PmH1(cos a)} : (50)

2i"+2 mPr(cosa)

- n(n+1) sina

(51)

17

When the plane wave is polarized in the x-z plane (TM), the coefficients are found to be

Cnm = az,:,f ibIE. (52)
and
bm = bIM = 48 (53)

2.6 The Scattering Amplitudes and Efficiencies

We consider the scattering amplitudes in the far field, where kr; > ka. The scattered fields
in this case are in the § and ¢ directions. In this limit, the spherical Hankel function reduces to
spherical waves:

(1) e

ikr

hiD (k) ~

(54)

The scattering amplitudes can be expressed in the form of the matrix,
¢ sca tkry nc
Eft) ™ (S0 Sa) (B) (55)
Eg§ —tkry \ S3 OS2 ™
The scattering amplitude matrix elements are solved by expanding the scattered electric tields
(equation 4) in terms of the vector wave functions and then expanding the vector wave functions
(equation 1) in terms of the polarization directions. Since we are concerned with the far field,

we may drop the 7 component and keep only the 6 and ¢ components. After some algebra, we
have:

7]
n 1mY1 TE m TE m
E E X [a’ p 91P (cosby) + "”’_86 P (Cos()l)} (56)

n=0m=-—n

. 5 :
Sy = Z Z)hetm X {cﬂjsin”gl})m(cos&) d,{,ﬁ{ag Pm((ow])J. (57)

> 7 o r m a " 7
Sy=—1Y_ ; (=1)"e™ x { TEsm91 P™(cosb,) + dTE — P™(cos 91)} . (58)

n=0m=-n nmag
=3 3 (e x [dT T Pricosty) + i o Pii(costh)| . (59)
n=0m=-—n Si 61 o 80

Using the following relationship for normalized, associated Legendre polynomials,
P™(cosb,) = (—1)™P™(cos 6;), (60)
the following relationships between the scattering coefficients may be derived:

Crm = (=)o

18

T _ +1 TM
nm (_l)m Com -

dT_E — (——1)m+ldTE.
dir = (-1)nd). (61)
where m = —m.

The scattering, extinction, and absorption efficiencies of the system are defined as the cross
sections per projected area and may be expressed as

2 > n ! 2 12 | 12 | 2

Qua= g [t 1) 3 (874l + -) @
1 n=1 m=—-n “ '
-9 o< n
Que = g * Fe [Zn(n £1) S (EaTE + aTEWTES + TMGTH 4 TMATI)
1, n=1 m=-n

(63)
Qabs = Qezl - Qsca- (64)

where a7, and b}, are the complex conjugates of any, and bnm, respectively. The asymmetry
parameter, g, can be expressed as

0 = G LmRe (CEdTE + AT

QSCG(

+n(n+2)\ (n—m+1)(n+m+1)

(2n+3)(2n+1)

-« TE TEx TE jTEx* TA TAMx TN T M=
Re [l(cnmcn—f-lm + dpmd + Cnm Cn+rim + dnm dn+1m1 : (65)

nm-n+im 1

Detailed derivations for the asymmetry parameter and the efficiencies are given elsewhere.[19]

3 SPECIAL CASES

Under certain conditions, the equations describing the internal and scattered fields may be
simplified. In this section we examine some of these cases.

3.1 Simplifications of ()}, and Q);,

When the inclusion satisfies certain conditions, equations 17 and 18, which describe the co-
efficients Q7 and @, can be simplified. In this subsection we demonstrate these simplifications.
First. when the optical size of the inclusion is much smaller than the wavelength (koas < 1).

Qn~1 (66)

19

O ~ 14 1i(koay)® (mj —my) .

3 (m2 -+ 2m1)
These are similar to the scattering coefficients for a Rayleigh scatterer. If the inclusion is a
perfectly conducting medium (my — c0). the coefficients can be reduced to

(67)

r_ 5(2)(k1a,2)
= (1)(‘4&2) ©%
5'(0 (k1as)
Q= 69
et (krag))

When the perfectly conducting inclusion is much smaller than the wavelength (a2 < A).
equations 68 and 69 further reduce to

Q, ~ 1+ 2 (70)
3
ik 3

3.2 Mie Reduction

It should be noted that if the refractive index of the inner sphere is equal to that of the outer
sphere, then the exterior field coefficients of the inner sphere, @}, and);, are unity (equations
17 and 18). The Riccati-Hankel functions of the first and second kind on the right hand sides
of equations 37 - 40 combine to form Riccati-Bessel functions of the first kind:

2k ‘
}:, twm Anin¥n(k101) + Unm B tin(kra1). (72)

Unmon(kay) 4 Cam€ (kay) = .
1 n/_o

A (k@y) + Cam€) (kay) = ZZtnm moh(kia1) + Um Brn(kran). (73)
n'=0

bnmwn(kal) + dnmg,gl)(ka'l) =2 Z tn’mB:;n,n’wn(klal) + un'mAnm,n’wn(klal)v (74)

n’=0

2k & ,
bamtp(ka1) + dnm&n Y (kay) = k > twmBratn(kia1) + Uwm AL ¥n(kra1). (75)
1 =0

Physically, the Riccati-Hankel functions of the first and second kind represent outgoing and
incoming spherical waves, respectively. With the inner sphere removed, there is no scattering
object within the larger sphere, and standing waves represented by Riccati-Bessel functions of
the first kind are contained within its interior. Note that substituting equations 34 and 35 into
the right hand side of equations 72 - 75 yields the boundary equations for Mie theory.

20

3.3 Concentric Spheres

When the host and inclusion spheres are concentric, i.e. they share the same origin (d = 0),
the translation coefficients are simplified, and

m
An,n’ = Opn',s

B'rTszn’ = 67171': (76)

where 6, is the Kronecker delta function. The scattering coefficients described by equations 37
- 40 now reduce to the accepted concentric spheres expressions given by Aden and Kerker.[4]

4 RESULTS AND DISCUSSIONS

In this section we examine the scattering of the nonconcentric sphere system as a function of
system parameters. As in any new theory, confidence of a new result relies on its simplification to
previously known solutions. But rather than analytically simplifying the general nonconcentric
expressions into specialized cases (we have already shown the special cases in the previous
section). we will keep evervthing general and allow the computer to numerically give us the
desired results. The greatest advantage of doing it this way is the assurance that the program
is coded correctly; or at the very least, the code reduces correctly in the specialized cases.
Simplifications of the system can be made by assigning to it special values so that comparisons
with Mie theory and concentric spheres theory may be done. We will show that when we simplify
the system, we obtain numerical values that are identical to Mie theory and concentric spheres
theory. We then consider two specific but arbitrary cases of the noncencentric system. The first
is an air inclusion (/= 1.0 + 0i) in a host sphere composed of water (7, = 1.33 + 07). The
second is a perfectly conducting inclusion in a host sphere composed of water. In both cases the
host radius is equal to the wavelength of the incoming radiation (a; = A).

4.1 Comparison with Mie Theory

When the refractive index of the host (77;) and the refractive index of the inclusion (r;)
are identical, we can say that the system is homogeneous. In this case, the nonconcentric sphere
should reduce to Mie theory. We take the host and the inclusion to be glycerol spheres with
refractive index 7 = 1.4746 + 07 at wavelength A = 0.5145um. Figure 3a shows the scattering
intensity of the glycerol sphere as a function of the sphere’s radius. This plot is obtained using
the Mie code presented by Bohren and Huffman.[20] The familiar quasi-periodic resonance
peaks are readily observable. Figure 3b shows the same plot, but using the nonconcentric sphere
model. We note that all the cycles of resonances are the same; in fact, we have normalized the
scattering intensity so that numeric values from the Mie code and the nonconcentric code are
the same (as can be seen in Figure 3). Also listed in Table 1 are the results from a run using the

21

1500 L 1 -+ .
! (a)
’]"E%4 TE’}&
1200 - 5
o] ’ T M3
Z 900 - T A3 _
c
3] 5
£
£ |
8 600 - -
= i -
O
@ b d
300 A -
0 e T — T
1.55 1.6 1.65 1.7
Radius(um)
1500 N 2 " " 1 i " A " 1 2 2 " N
J (b)
1200 -3 -
Y J
>
= 900 - B
C
S 1 i
£
U) e
£
S 600 -
© E L
(&)
w o
300 - -
0 e
1.55 1.6 1.65 1.7
Racdius(pum)

Figure 3. Comparison of the scattering intensity as a function of droplet radius (m =
1.4746 + 07) using the Mie code from Bohren and Huffman (). and the nonconcentric code (b)
with 711} = s = 1.4746 + 0i. The resonance structures are clearly evident in both cases.

22

Input:

Comparison with Mie Scattering output

REFRE = 1.550
SPHERE RADIUS = 0.525 um
WAVELENGTH = 0.6328 um

TABLE 1

REFIM = 0.0

Output:

Qsca = 3.10543 Qext = 3.10543 g =0.633137
angle St1 POL (S12) S33 S34
0.0 1.00000 0.0 1.00000 0.0
9.0 0.785391 4.59811E-03 0.999400 3.43261E-02
18.0 0.356897 4.58540E-02 0.986022 0.160184
27.0 7.66119E-02 0.364744 0.843602 0.394077
36.0 3.55355E-02 0.534997 0.686967 -0.491787
45.0 7.01845E-02 -9.59953E-03 0.959825 -0.280434
54.0 5.74324E-02 -4.77927E-02 0.985371 0.163584
63.U 2.19660E-02 0.440604 0.648043 0.621216
72.0 1.25959E-02 0.831996 0.203255 -0.516208
81.0 1.73750E-02 -3.41670E-02 0.795354 -0.605182
90.0 1.24601E-02 -0.230462 0.937497 0.260742
99.0 6.79093E-03 0.713472 -7.17406E-03 0.700647
108.0 9.54240E-03 0.756255 -3.94746E-02 -0.653085
117.0 8.63419E-03 0.281215 0.536251 -0.795835
126.0 2.27421E-03 0.239612 0.967602 7.95797E-02
135.0 5.43998E-03 0.850803 0.187531 -0.490882
144.0 1.60244E-02 0.706334 0.495255 -0.505781
153.0 1.88853E-02 0.891081 0.453277 -2.26817E-02
162.0 1.95254E-02 0.783320 -0.391613 0.482752
171.0 3.01676E-02 0.196194 -0.962069 0.189556
180.0 3.83189E-02 0.0 -1.00000 0.0

23

TABLE 2

Comparison of Nonconcentric
with Coated Sphere Theory

Input:
A=3.0um, m, = 1409 +0.17471, m, = 1.59 + 0.661

Output:
Radius (um) Coated Sphere Nonconcentric
a, = 6.2650 Qext = 2.32803 Q.xt = 2.32803
a, =0.1710 Qsca = 1.14341 Qsca = 1.143413
a, =5.50 Qext = 2.34481 Qexi = 2.344814
a, = 1.50 Quca = 1.13227 Qsca = 1.132269
a, = 3.50 Q.xt = 2.58325 Qext = 2.58325
a, = 2.00 Qsca = 1.28485 Qsca = 1.28485

Input:
A=3.0um, m =1.409 + 0.0i, m, = 1.592 + 0.66i

Output:
Radius (um) Coated Sphere Nonconcentric
a, = 6.2650 Qaxi = 2.77588 Qext = 2.77588
a, =0.1710 Qsca = 2.77518 Qsca = 1.77518
a, =5.50 Q.x: = 2.04387 Qex: = 2.04387
a, = 1.50 Qsca = 1.85917 Qqca = 1.859173
a. =3.50 Q.x1 = 3.19478 Q.x: = 3.194786
a =2.00 Qca = 2.41198 Qsca =2.411986

Input: T
A=3.0um, m =1.409 + 0.0i, m, = 1.592 + 0.0i

Output:
Radius (um) Coated Sphere Nonconcentric
a, = 6.2650 Qext = 2.77604 Qext = 2.77604
a, =0.1710 Qsca = 2.77604 Qsca = 2.77604
a, =5.50 Qext = 2.31972 Qext =2.319716
a =1.50 Qsca = 2.31972 Qsca =2.319716
a, = 3.50 Q.xt = 2.28173 Qxt = 2.28173
a, =2.00 Qsca = 2.28173 Qsca = 2.28173

24

nonconcentric code with inputs taken from page 482 of Bohren and Huffman.[20] The numerical
values for both programs are identical. This tells us that our nonconcentric sphere model does
indeed reduce to Mie theory in the appropriate limit.

4.2 Comparison with Concentric Theory

When the displacement d separating the two origins is zero, we have a concentric sphere
system. Using the concentric code presented in Bohren and Huffman, we are able to show that,
in all cases. our nonconcentric sphere model reduces to the concentric sphere model. Sample
results of using the two methods are given in Table 2 (the first set of output can be compared
to page 489 of Bohren and Huftman).[20]

4.3 Examination of Two Types of Inclusion

In this section, we examine the scattering properties of the nonconcentric sphere model by
considering two specific but arbitrary cases. The first is an air inclusion (7, = 1.0 + 0.0¢) in
a host sphere composed of water (r; = 1.33 + 0.07). The second is a perfectly conducting
inclusion in a host sphere composed of water. In both of these cases, the host radius is equal to
the wavelength of the incident radiation (a; = A).

Figure 4 shows the extinction efficiencies as a function of displacement distance d when
the incident angle @ = 0° and the beam travels parallel to the z axis for inclusion spheres of
different radii. For comparison, we also plot the extinction efficiencies for a sphere composed
entirely of water (a; = 0, shown by the solid lines, top and bottom), for which Qe,+ = 3.916.
For a sphere composed entirely of a perfectly conducting medium (top graph), Qe,: = 2.094. For
a sphere composed entirely of air, we have, of course, Qez: = 0.0. The most remarkable feature
of the graphs is their symmetry. The extinction is independent of the sign of the displacement;

i-e~ (QCIt((” = cht(—d)-

The result that Q.¢(d) = Q..¢(—d) is a direct consequence of the reciprocity theorem which
states that if a scattering system whose scattering matrix is given by equation 55 is replaced
by its mirror image (the mirror is perpendicular to the direction of the incident field), then the
scattering due to the mirror system in the forward direction (6, = a, ¢1 = 0%) is given by

CE(e.00))\ _ et (S =5 By (77)
Ei*(a,0) —ikr; \ =S¢ So Efy)

We know from the optical theorem that the extinction is proportional to the real part of
the scattering amplitude in the forward direction, and from equations 48-53 and 56-61, it can
be shown that there is no coupling of modes in the scattering plane, i.e., S3 and 5S4 do not
contribute to the scattering amplitude when ¢ = 0°. Therefore, the extinction of the scattering
system discussed in this paper is equal to the extinction of its mirror image.

25

4.5
4 - -
/—\\//—s.——_\\-/_ ™
3.5 1 I~
: —— -
& // ~N— \\
3 - o
25 - S~ -
| _Conductor Inclusion _ ___ ______________|
2 T T T T T
-0.75 -0.5 -0.25 0 0.25 0.5 0.75
d(3)
45] 1] 1 1
4 _’\~______________ e — 1
3.5 1 B
—— a,=i/4
3 ——=-a =M2 =
——— a,=3M4
_____ az - ;\
2.5 7 -
Airinclusion ~ O~
2 T T T T T
-0.75 -0.5 -0.25 0 0.25 0.5 C.75
d(®)

Figure 4. The extinction efficiencies as a function of displacement distance d when the
incident angle a = 0° for a perfectly conducting inclusion (top) and an air inclusion (bottom)
inside an a; = A water host (mn; = 1.33 + 07).

26

Total Intensity S,

Total Intensity S,y -

10%

-
o

-
2aa}

A.23

Conductor Inclusion

107

-0.75

-0.5 -0.25

10"

\

A
\\ y\/

\

—_
|

- — — a2
| ——— a =34

\ / \ﬁ//

:-———a20

= M4
AM2

LEa |

W

107"

Figure 5. The backscattering total intensity S;; as a function of displacement distance d
when the incident angle o = 0° for a perfectly conducting inclusion (top) and an air inclusion

(bottom) inside an a; = X water host (m;,

1.33 + 04).

27

Figure 5 shows the backscattering intensities (incident angle a = 0° and 6, = 180") as a
function of displacement distance d for the same cases shown in Figure 4. Also shown on both
graphs are the backscattering intensities when there is no inclusion (a; = 0), in which case
the backscattering S;; = 1.837. Unlike the plots shown in Figure 4, these plots do not show
a symmetric S;;. There are also some differences in the backscattered intensities between the
two systems in this figure. For the case of the perfectly conducting inclusion, the backscatter
is generally greater than for a sphere with no inclusion (at times by more than an order of
magnitude); whereas, for the case of the air inclusion, the backscatter generally stays within a
tactor of two of the backscatter of the system with no inclusion.

The difference in the backscattering between a system with a perfectly conducting inclusion
and an air inclusion can be better understood by considering the rays which strike the system.
Incident rays striking the surface of the host sphere either refract convergently within the sphere
(for our case when the refractive index of the host sphere is greater than the refractive index of
the incident medium) or reflect off the outer surface. Some of the refracted rays which reflect off
the surface of the inclusion may be traced into the backscatter direction (these are the rays which
strike the inclusion at normal incident or strike the inclusion at z, = yo = 0). The reflectance
from the perfectly conducting inclusion is 100%; whereas, the reflectance from an air-water
interface is approximately 2% near normal incidence. Because of the greater reflectance at the
conductor intertace, we expect the backscatter to be greater when there 1s a periectly conducung
inclusion. The reflectance at the air inclusion interface is approximately the same as at the outer
surface interface, so we do not expect the backscatter for the air-inclusion system to vary as
greatly from the sphere system without the inclusion.

Figure 6 shows the extinction efficiencies for an a; = A/4 inclusion as a function of the
incident angle a for four displacements. When the inclusion and host spheres are concentric. the
extinction does not vary, as expected from symmetry. As the inclusion distance increases. the
magnitude of the total variation in the extinction becomes greater. Also, the number of inflection
points in the extinction curves increases. Essentially, the closer the inclusion is to the host sphere
surface, the greater the effect it has on the extinction of the system. This point is reinforced in
the next section where we examine the resonance of the composite system. We also note that
because of the system symmetry, the extinction efficiencies must be symmetric about a = 0°.
and from the reciprocity theorem, they must also be symmetric about a = 90°.

Figure 7 shows the backscattering intensities (6; = = +) for an a; = A/4 inclusion as
a function of incident angle a for the same displacements as in the previous figure. As was
the case for the extinction efficiencies, the number of inflection points in these backscattering
intensity curves increases as the inclusion distance increases. However, the symmetry about
a = 90° which exists in the extinction efficiencies of Figure 6 is not present in the backscattering
intensities.

Figure 8 shows the extinction efficiencies as a function of the inclusion radius for four

28

3.9

3.8 - / \ -

b3
Q
C 7,/:—/~\/<\ ~o //"Ix\’ \ ::\ —
—)(// \\\ ,/ \ q
37 - \ / . // \ L
_/ S \v/
d=0
------ d=M4
) ——— d=A2
Conductor Inclusion —— §=3M4
3.6 T T T T Y
0 30 60 90 120 150 180

o (degrees)

41 1 1 1 1 1
N /]
4 -1 \ 1/’_ ~
"‘\"\\-\.\ __________ /,,rfik"
3 \ N / /
e] N\ /
NN a,
\ / /
3.9 \ S -
\ /
~__ __7
Air Inclusion
3.8 T T T T T
0 30 60 90 120 150 180

a (degrees)

Figure 6. The extinction efficiencies as a function of the incident angle o for a perfectly
conducting inclusion (top) and an air inclusion (bottom) inside an a; = A water host (Th; =
1.33 + 07). The inclusion radius is a; = A/4.

29

10°

Total Intensity S,

107

Total Intensity Sy

107

i 1 1 1 1 .
:\ d=0
A d=M4 |
\ ——— d=MR2
] —_—— d=3M4
L i
1 _\&/ P
: \\ \/(—\\ /, \\\ L
i\) AN A
\./ \\ / (7
\/ S/ \ 7\ o
JEEA \ '/
- 1 -
] \ \\\./ /Ifl' \\ / \V/ :
- \ -
j \ fl J '
\\\ {
. Conductor Inclusion
1 1 i 1 1
0 30 60 g0 120 150 180
c (degrees)
| 1 i i 1 |
i [\ \ L
h / \/// \ //\ PN e r
2TNAL — —~—]
[7N TN
- / s T C
+ —~; ~7\\ ,// r
A [/ :
1 4/
1 1/
P L
I Air Inclusion
T 1 1 T 1
0 30 60 jelo] 120 150 120

¢ {degrees)

Figure 7. The backscattering total intensity Sy, as a function of the incident angle a for a

perfectly conducting inclusion (top) and an air inclusion

(bottom) inside an a; = A water host

(1, = 1.33 + 07). The inclusion radius is a2 = /4.

30

Conductor Inclusion

T

2 T T T T
0 0.2 0.4 0.6 0.8 1
ap (A)
5 1 1 1 i
4 . — =
\\
3 - N
%
D
)
2 - b
1 n
Air Inclusion
0 T T T T
0 0.2 0.4 0.6 0.8 1
a ()

Figure 8. The extinction efficiencies as a function of inclusion radius when the incident
angle o = 0° for a perfectly conducting inclusion (top) and an air inclusion (bottom) inside an

a, = A water host (7, = 1.33 + 01).

31

Qexr

Conductor Inclusion

2 T T T T

0 0.2 0.4 0.6 0.8

a, ()
5 1 1) 1
4 7 e -
\§-\\
Q.\\
N
3 -
3 \
c A\
\
2 - \\
\!
\\
\
1 \\\\\
Air Inclusion

0 T T T T

0 0.2 04 0.6 0.8

a, (A)

Figure 9. The extinction efficiencies as a function of inclusion radius when the incident
angle a = 0° and a; = a, + d for a perfectly conducting inclusion (top) and an air inclusion

(bottom) inside an a; = A water host (m; = 1.33 + 01).

32

different separation distances when « = 0°. The solid lines in both graphs (d = 0) correspond to
the cases where the host and inclusion spheres are concentric. We also calculated the extinction
efficiencies for systems having negative values of the displacements shown, but, as has been
discussed earlier, these values are identical to the extinction efficiencies of systems having
positive displacements.

Figure 9 shows the extinction efficiencies as a function of the inclusion radius when the
inclusion is at the edge of the host sphere (a; = as + d) when o = 0°. From system symmetry
and the reciprocity theorem, Qczt(@) = Qegt(—) = Qez:(180° — @). A comparison of Figures
8 and 9 shows that there is a greater range in extinction efficiencies, and therefore a greater
sensitivity of the efficiencies, when the angle of incidence is varied than when the inclusion is
translated in the direction of the incident beam.

Examinations of the above figures reveal two important findings for the nonconcentric sphere
system. The first finding is that the extinction efficiency is independent of the sign of the
displacement of the inclusion particle. In other words, the system gives the same value of the
extinction efficiency regardless of whether the inclusion lies in the forward direction (where
the fields are generally stronger) or in the backscatter direction (where the fields are generally
weaker). We also see that the closer an inclusion is to the surface of the host sphere, the greater
the effect it has on the extinction of the system. This last point is very important in terms of
resonance suppression.

5 CONCLUSION

We have derived solutions for the total field when an incident plane wave strikes a host
sphere containing a nonconcentric spherical inclusion. Reduction of the general result to that
of the concentric sphere and the Mie sphere verifies the validity of the derivation. We have
examined the scattering as a function of a number of system parameters. Of particular interest
is the independence of the extinction efficiency on the sign of the displacement of the inclusion
particle. We also see that the closer an inclusion is to the surface of the host sphere, the greater
the effect it has on the extinction of the system.

33

Blank

34

LITERATURE CITED

[1] J. Goldenson and J.D. Wilcox, “Carrier dusts for toxic aerosols. 1. Preliminary survey of
dusts,” TCR-66, Chemical Corps Technical Command, Army Chemical Center (1950).

[2] G.H. Milly and R.M. Black, “Report of field test 266, static test of a single 101b. experimental
bomb filled GB on carrier dust.” TCIR-581, Chemical Corps Technical Command, Army
Chemical Center (1950).

[3] A.L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric
spheres.” J. Appl. Phys. 22, 1242-1246 (1951).

[4] R.W. Fenn and H. Oser, “Scattering properties of concentric soot-water spheres for visible
and infrared light,” Appl. Opt. 4, 1504-1509 (1965).

[5] K. A. Fuller, “Scattering of light by coated spheres,” Opt. Lett. 18, 257-259 (1993).

[6] D.S. Wang and P.W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl.
Opt. 18. 1190-1197 (1979).

[7] D. S. Wang, Light Scattering by Nonspherical Multilayered Particles, Ph.D. dissertation,
Dept. of Physics, U. of Utah, Salt Lake City (1979).

[8] D.Q. Chowdhury, S.C. Hill, and P.W. Barber, “Morphology-dependent resonances in radially
inhomogeneous spheres,” J. Opt. Soc. Am. A 8, 1702-1705 (1991).

[9] P. Chylek, V. Srivastava, R.G. Pinnick, and R.T. Wang, “Scattering of electromagnetic waves
by composite spherical particles: experiment and effective medium approximations,” Appl.
Opt. 27, 2396-2404 (1988).

[10] B. Friedman and J. Russek, “Addition theorems for spherical waves,” Quart. Appl. Math.
12. 13-23 (1954).

[11] S. Stein, “Addition theorems for spherical wave functions,” Quart. Appl. Math. 19, 15-24
(1961).

[12] O.R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Quart.
Appl. Math. 20, 33-40 (1962).

[13] J.G. Fikioris and N.K. Uzunoglu, “Scattering from an eccentrically stratified dielectric
sphere,” J. Opt. Soc. Am. 69, 1359-1366 (1979).

[14] F. Borghese, P. Denti, R. Saija, and O.1. Sindoni, “Optical properties of spheres containing
a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327-1335 (1992).

[15] K.A. Fuller, “Scattering and absorption by inhomogeneous spheres and sphere aggregates,”
SPIE Proc. 1862. 249-257 (1993).

[16] P.A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica 137A,

35

209-241 (1986).

[17] G. Videen, Light Scattering from a Sphere on or Near an Interface, Ph.D. dissertation.
Dept. of Physics, U. of Arizona, Tucson (1992).

[18] D. Ngo, Light Scattering from a Sphere with a Nonconcentric Spherical Inclusion, Ph.D.
dissertation, Dept. of Physics, New Mexico State University, Las Cruces (1994).

[19] C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles
(Wiley, New York, 1983).

36

Appendix: NONCONCENTRIC SPHERE CODE

Description of The Program

This appendix contains the FORTRAN code for the nonconcentric spheres. The program
consists of the main routine and twelve subroutines. Most calls to the subroutines are made
from the main program. We will briefly describe each subroutine and its respective variables.
This program calculates the Mueller scattering matrix elements (S;;), and the extinction (Qezt).
scattering ((vc), and absorption (Qa.) efficiencies for a set of initial inputs. The input data
is read from the “inputin” file. All the variables used are defined in a separate file named
“declare.def”. The reason for using this method is the convenience of having all the variables
in one separate file for comparison and debugging purposes. Explanation of some important
variables are given in the subsections below. Also, a short descriptions of the subroutines are
presented.

The only restriction placed on this program is that we cannot allow the inclusion radius
to equal zero, i.e. ay # 0. The reason is that the Neumann functions blow up if the argument
is zero. If the user wishes to have no inclusion, the user can let the index of refraction of the
inclusion equal that of the host sphere, i.e. m; = M.

Subroutine bessel (n.np.bessj,x)

This subroutine calculates the spherical Bessel function of the first kind from order -1 to
order n, and stores the results in the array bessj. The variable n is related to the size parameter X.
If x is large, then n is also large. The variable np is the maximum size (the physical dimension)
of the array. Here np is isize, where isize is defined in the file “declare.def”

Input

n: The largest order of the Bessel function, which is determined in the main routine by
the definition of nbg.

np: The array size defined by the parameter isize.

x: The argument of the Bessel function.

Output

bessj: This double precision real array contains the values of the spherical Bessel function
of the first kind [j,(k.a;)], from order -1 to order n.

A-1

Subroutine c_bessel(n,np,bessj.x)

This subroutine is similar to the Bessel subroutine except that it takes a complex argument
x instead of a real argument. The array bessj is a complex double.

Input

n: The largest order of the Bessel function, which is determined in the main routine by
the definition of nbg.

np: The array size defined by the parameter isize.

x: The complex argument of the Bessel function.

Output

bessj: This double complex array contains the complex values for this complex spherical

Bessel function of the first kind {5, (k;a,)] . from order -1 to order n.

Subroutine newman(n,np,bessy x)

This subroutine calculates the spherical Bessel function of the second kind (or the Neumann
function, n,(k,a,)). from order -1 to order n and stores the resuits in the double precision array
bessy.

Input

n: The largest order of the Neumann function, which is determined in the main routine by
the definition of nbg.

np: The array size defined by the parameter isize.

x: The argument of the Neumann function.

Output

bessy: This double precision real array contains the values for this spherical Neumann
function [n, (k,a,)]. from order -1 to order n.

Subroutine c_newman(n,np,bessy,x)

This subroutine is similar to the newman subroutine, except that it takes a complex argu-
ment x instead of a real argument. The array bessy is now a complex double.

Input

n: The largest order of the Neuman function, which is determined in the main routine by
the definition of nbg.

np: The array size defined by the parameter isize.

x: The complex argument of the Neumann function.

Output

bessj: This double complex array contains the complex values for this spherical Neumann

A-2

function {n,(k;a;). from order -1 to order n.

Subroutine riccati(nbg,hval,zeta,dzeta, x)

This subroutine takes as input the Hankel functions of the first or second kind and transform
them into the Riccati-Bessel functions and their derivatives. The transformation follows from
the definition of the Riccati-Bessel functions shown in the preceding derivations.

Input

nbg: The largest order for the Hankel and Riccati-Bessel functions.

hval: The double complex array which contains either the first [h}(ka;)] or the second
[h2(kya,)] Hankel functions as defined and computed in the main routine. The values stored in
this array range from order -1 to order nbg.

x: The double complex argument of the spherical Hankel function.

Output

zeta: This is the Riccati-Bessel function. The values are stored from order zero to order
nbg into this double complex array.

dzeta: This is the derivative of the Riccati-Bessel function, the results are stored into this

auudic LULIPich dildy.

Subroutine nplgndr(m,nbr,iisize,legpol x)

Given a value for m, where m < nbr, this subroutine calculates the normalized associated
Legendre polynomials [}5,;” (ac)} from order m = 0 to nbr and stores the values in the array
legpol.

Input

m: The integer order for legpol. which ranges from 0 to nbg.

nbr: This variable has a maximum value of nbg+1; the iteration of this subroutine goes
from m to nbr.

iisize: This variable is defined as isize + 1 (shown in the “declare.def” file).

x: This argument for the normalized associated Legendre polynomials is the cosine of the
angle, 1.e. = = cost.

Output

legpol: This is the one-dimensional array containing the calculated values. It has a physical
dimension of isize + 1.

Subroutine ludcmp(a,n,np,indx)

This subroutine decomposes and Tri-diagonalizes a matrix. Given a matrix a(1:n,1:n) with
physical dimension np, where np is defined as isiz2 in the “declare.def” file, this subroutine
replaces it by the LU Decomposition of a row-wise permutation of itself. The procedure is an
n3 process, so that for large size parameters, the computation time slows down dramatically. If
nbg is bigger than 70 (which corresponds to a size parameter of z =~ 50), one should change
the value of nmax in this subroutine so that one always has nmaz > 2(nbg + 1). This routine
is used in conjunction with the subroutine lubksb’ to solve linear equations or invert a matrix.
Note that we have modified this subroutine to accept double complex arguments.

Input

a: This is a double complex n x n matrix given by equations 40 and 41 in the preceding
derivation. After this matrix passes through this subroutine, it will be destroyed and replaced
with its tri-diagonal.

n: This integer value is equal to 2(nbg+tl). The parameter nmax, defined within this
subroutine, must be greater than or equal to this value.

np: This is the physical dimension size of the matrix and has a value of 1siz2. It is safe to
let 1t be larger than n.

Output

a: The original matrix is now a tri-diagonalized matrix. This new matrix can now be used
in conjunction with the subroutine lubksbh to solve the hinear equation.

indx: This is an array which records the row permutation effected by the partial pivoting.

Subroutine lubksb(a,n,np,indx,b)

This subroutine solves the set of n linear equations ar = b. The solution vector is rep-
resented by the array b, and the solution vector x, after going through the subroutine. is also
stored in b. The variables n, np, and the arrays a and indx. are not modified by this routine and
can be left in place for successive calls with different right-hand sides b. This routine takes into
account the possibility that b will begin with many zero elements, so it is efficient for use in
matrix inversion. We have also modified this subroutine to accept double complex arguments.

Input

a: This double complex matrix, with physical dimension np, is the same matrix a which
has undergone the tri-diagonalization in the subroutine ludcmp.

n: This integer value is equal to 2(nbg+1). The variable nmax, defined within this sub-
routine, must be greater than or equal to this value.

np: This is the physical dimension size of the matrix and has a value of isiz2. We must
keep in mind that np must be greater than n.

indx: This is the output vector which records the row permutation effected by the partial

Numerical Recipes, 2nd Edition

A-4

pivoting in the subroutine ludcmp.

b: This input vector is the right-hand side of the equation az = b, i.. it is the solution
vector. The subroutine will solve for the vector x, and places its values in b.

Output

b: The vector x is now placed in this array.

Subroutine mprove(a,alud,n,np,indx,b.x)

This subroutine, which has been modified to accept double complex arguments, improves
a solution vector x of the linear set of equations azx = b. It assumes that the vector x is off from
the true solution by éz, and it recursively solves for éz and improves that vector. It does this
by comparing the two matrices a and alud, with the solution b and argument X, and improves
on the solution of x. Note that inside this subroutine is the parameter nmax, which should have
the same value as that given in the subroutine ludcmp.

Input

a: This n x n matrix is the original matrix before it has undergone any changes due to the
result of the subroutine ludcmp. All the values are in their original state.

alud. This 7« ~ 7 matrix is the one that underwent the tri-diagonalization associated with
the ludcmp subroutine. It is the output matrix, a, given in the ludemp subroutine above.

n: The size of the two matrices, and the size of the vector x, b, and indx.

np: The physical dimension of the two matrices.

indx: The output vector returned by the subroutine ludcmp.

b: The solution vector of the equation az = b.

x: This vector is the output from the subroutine lubksb.

Output

x: After mprove, x has been modified and improved to a new set of values. Note that this
subroutine can be called as often as one wishes, but generally, one or two calls are enough.

Function find_g(nbg,nn,ang cte,dte,ctm,dtm)

This function calculates the asymmetry parameter, g. and retums the value in double
precision to the main routine.

Input

nbg: The largest order of the Bessel function defined in the main routine.

nn: The physical size of the arrays used.

ang: The incident angle.

cte: This is the array which contains the scattering coefficients for the TE mode.

dte: This too contains the scattering coefficients for the TE mode.

A-5

ctm: This array contains the scattering coefficients for the TM mode.
dtm: This contains the scattering coefficients for the TM mode.
Output

fing_g: Returns as a double precision real number.

Subroutine rotation(a,b,c,d,nbg ang cte,dte ctm,dtm nn i)

This subroutine is used in conjunction with the function find_g to calculate the asymmetry
parameter. We must rotate and integrate over the entire sphere in order to find the asymmetry
parameter.

Input

nbg: The largest order of the Bessel function used.

ang: The incident angle.

nn: The physical size of the arrays sent from the main routine.

ij: The physical size of the arrays sent from the function find_g.

cte, dte, ctm, dtm: The arrays which contain the scattering coefficients as sent in from the
main routine. These values are now stored into the arrays a, b, ¢, d respectively.

Output
a. b, c. d: These are the new rotated arrays containing the scatttering coefficients. Now

we can use these new arrays to calculate the asymmetry parameter.

Function factorial(n)

This function calculates the factorial of a given integer. Since a factorial of a large integer
will blow up. we define this function to take the sum of the log of the number. This will ensure
us of stability in our calculations.

Input

n: The integer value sent in from the subroutine rotation.

Output

factorial: This function now returns a double precision real number.

Declare.def

Within the main routine is an include statement which refers to this file. The parameter
isize is presently set to handle a size parameter of up to 50. The program can be made to handle
an even larger size parameter by increasing isize appropriately. Note that if the size parameter

A-6

of the run is greater than 50, one must change isize to a larger number to include all memory
allocations; also. the parameter nmax in the subroutines ludcmp and mprove must be increased
in value. The other parameter, isiza, is presently set to handle up to 360 degrees by increments
of 9 degrees. If the run is to have a resolution greater than 1 degree (which can be changed in
the input file with the variable num), isiza must be changed to meet that specific need.

A-7

o o0 o0 o0 o0 o0

. Scattering program for an inclusion imbedded inside the
. host droplet. The input data is taken from the file

. "input.in" and the variables and arrays are defined in

. the file "declare.def".

implicit double precision (a-h,0-z)
INCLUDE 'declare.def’

open(unit=4,file="input.in',status="old")
rewind(4)
open(unit=8,file="output.out')

read(4,*) wavel
read(4,*) radl
read(4,*) rad2
read(4,*) distance
read(4.*)m rl.m 1l
read(4,*) m_r2,m i2
read(4,*) inc_ang
read(4,*) num
read(4,*) phi

pi=1.0
ccc=demplx(0.0,pi1)
pi=4.0*datan(pi)

m_l=demplx(m_rl,m il)
m_2=dcmplx(m_12,m_i2)
k0=2.*piv/wavel
k1=k0*m 1

k2=k0*m 2

x0=k0*rad1

x1=k1*radl

x2=k1*rad2

x3=k2*rad2

nbg= # of iterations for the big sphere and loops

nbg=cdabs(x0) + 4.*cdabs(x0)**.333 + 2.0
print*'the value of nbg=",nbg

A-8

Calculate Bessel Functions for the first boundary at rad1

We have bessel as an incident field of the sphere, and a
hankel as the scattered field. Their arguments are x0 and ¢x0
Then we have hankell and hankel? inside the sphere; and
their argument is k1*radl=x1.

o OO0 06

cx0=dreal(x0)
call bessel(nbg,isize,besj_0,cx0)
call newman(nbg,isize,temp,cx0)
call ¢_bessel(nbg,isize,hankel 0,x0)
do 11 i=-1,nbg
hankel _o(i)=hankel o(i)+ccc*temp(i)
11 continue

call ¢_bessel(nbg,isize,hankell _1,x1)

call c_bessel(nbg,isize,hankel2_1,x1)

call c_newman(nbg,isize,tempc,x1)

do 12 i=1,nbg
hankell 1(i)=hankell_1(i) + ccc*tempc(i)
hankel2_1(i)=hankel2_1(i) - ccc*tempc(i)

12 continue

Now we match boundary at rad2. Here we have two hankels in
the host sphere, and their argument is k1*rad2=x2

Then we have a bessel inside the inclusion with its argument
being x3. Note: since this is for the small inclusion, we

must take care to have spherical bessel functions which are
within the limits of that size; the order should never exceed

the size of the sphere because it'll blow up in your face

o o0 o0 o0 0 00

nsm=cdabs(x2) + 4.*cdabs(x2)**.333 + 2.0

iftm_r2.gt.0.0) call c_bessel(nsm,isize,besj_2,x3)

call c_bessel(nsm,isize,hankell _2,x2)

call ¢_bessel(nsm,isize,hankel2_2,x2)

call c_newman(nsmisize,tempc,x2)

do 13 i=-1,nsm
hankell 2(i)=hankell _2(i) + ccc*tempe(i)
hankel2 2(i)=hankel2 2(i) - ccc*tempc(1)

13 continue

¢. Calculate Riccati-Bessel Functions and Derivatives needed
c. Note that zetal 1 means the 1st zeta at klal

A-9

and zeta2 | means the 2nd zeta at klal
and zetal 2 means the Ist zeta at kla2

psi_o(-1)=cx0*besj_o(-1)
do 21 n=0.nbg
psi_o(n)=cx0*besj_o(n)
dpsi_o(n)=cx0*besj_o(n-1) -n*besj_o(n)
21 continue
call riccati(nbg,hankel o,zeta_o,dzeta_0,x0)
call riccati(nbg.hankell 1,zetal 1,dzetal_1,x1)
call riccati(nbg hankel2 1,zeta2 1,dzeta2 1,x1)
call riccati(nsm,hankell 2,zetal 2,dzetal_2,x2)
call riccati(nsm,hankel2 2,zeta2 2 dzeta2 2.,x2)
call riccati(nsm,besj 2,psi_2,dpsi_2,x3)

Now we must solve for the Quality factors by using equations
17 and 18; These Q's relate the inclusion's field coeffs
to the outter sphere's coefficients, and it contains infos such
as the inclusions's radius and refractive index

Note that if the index of refraction of the inclusion is nega-
tive. then we'll take that to mean it is a perfect conductor.
and the simplification is in the "else" part of the if-else
statement. We cannot use index > 100 because it'll blow up

O o o 0 o0 o0 0 0

if{lm_r2.gt.0.0) then
do 25 n=0,nsm
factl=k1*dzeta2 2(n)*psi_2(n)-k2*zeta2 2(n)*dpsi_2(n)
fact2=k2*zetal 2(n)*dpsi_2(n)-k1*dzetal_2(n)*psi_2(n)
Q r(n)=factl/fact2
fact3=k2*dzeta2 2(n)*psi_2(n)-k1*zeta2 2(n)*dpsi_2(n)
factd4=k1*zetal 2(n)*dpsi_2(n)-k2*dzetal_2(n)*psi_2(n)
Q_s(n)=fact3/fact4
25 continue
¢ Now to fill in the rest of the array with a constant value. This is a must.
do 26 n=nsm+1.nbg
Q_r(n)=dcmplx(1.0,0.0)
Q_s(n)=Q_r(n)

26 continue

else
C eteeeteeeee et e e e ettt e be s ae e e e baeeans
¢ . The inclusion is a perfect conductor
C et e e enr e ta et et e a e

print*,'The inclusion is a perfect conductor'
do 35 n=0,nsm

A-10

Q_r(n)=-zeta2_2(n)/zetal_2(n)
Q_s(n)=-dzeta2_2(n)/dzetal_2(n)
35 continue
do 36 n=nsm+1,nbg
Q_r(n)=demplx(1.0,0.0)
Q_s(n)=Q_r(n)
36 continue
endif

center to center radii is d. We will first find the bessel
function which describes the separation, k1d

xd=(k0*m_1)*distance
if (xd.eq.0.0) then
nsm=2
else
nsm=cdabs(xd) + 4.*cdabs(xd)**.333 +2.
endif
call ¢_bessel(3*nsm,isiz4,besj_d.,xd)

Begin the scalar translation coefficients .
keeping in mind that cuplo = ¢0,0(np)

¢. and cuplol = c-1,0(np) for starters

do 110 np=0,nbg*4
fnp=dfloat(np)
cuplo(np)=besj_d(np)*dsqrt(2.*fnp+1.)
cuplo 1 (np)=-cuplo(np)
110 continue
do 115 np=0,nbg*2
cuplom(0,np)=cuplo(np)
115 continue

C e e eeeeeeiar—reeaeasaetteeee e s rareaaaanaarnrane
¢. Now for some acrobatics; this is where we .
c. perform the switcharoos and recursively .
c. solve for the translation coeff. The

c. result is stored into the matrix cuplom

C e e et —aa e e e naer et ses b naea e

do 140 n=1,nbg*2
fn=dfloat(n)
do 120 np=0,nbg*4-n

A-11

¢. Calculate translation coefficients when the separation of the

120

C

130

fnp=dfloat(np)

=cdsqrt(demplx((2.*fnp+1.)/(2.*n-3.)))*(fn-1.)

c=cuplo1(np)*c
cuplo 1(np)=cuplo(np)

cuplo(np)=c

continue

do 130 np=0.nbg*4-n

fnp=dfloat(np)

c=-(fnp+1.)*dsqrt((2.*fn-1.)/(2.*mp+3.))*cuplo1(np+1)

if (np.le.nbg*2) then
cuplom(n,np)=cuplo(np)
write(8,*)n,np,cuplom(n,np)

endif

continue

140 continue

. Now that we have the elements in the matrix
. cuplom(n,np), we can start the iterations in

c
c
¢ . mto get the rest of the translation coeff
c

. Then we'll have the complete set of C(n,m)np

o o o o

165

c=c+fnp*cdsqrt(dcmplx((2.*fn-1.)/(2.*fnp-1.)))*cuplo1(np-1)
c=c+cuplo(np)
cuplo(np)=c*dsqrt((2.*fn+1.)/(2.*fnp+1.))/fn

. But first we need to calculate, for each m, the
. Legendre Polynomials for incident angle theta .

ii=nbg+1
x=dcos(pi*inc_ang/180.)
mmm=m-+1
call nplgndr(mmm,ii,isizel,legpoll,x)
mmm=m
call nplgndr(mmm,ii,isizel,legpol2,x)
if (m.gt.0) then
mmm=m-
call nplgndr(mmm,ii,isizel,legpol,x)
else
do 165, jjj=-2,is1zel
legpol(jjj)=-legpoll (i1j)
continue
endif

A-12

.

do 180 i=m,nbg
fi=dfloat(i)
tau=dsqrt((fi+m+1.)*(fi-m))*legpoll(i)
pie=tau
tau=(tau-dsqrt((fi+m)*(fi-m+1.))*legpol(1))/2.0
if (dabs(x).gt.0.5) then

pie=pie+dsqrt((fitm)*(fi-m+1.))*legpol(i)
pie=pie*.5/x
else
. theta is between 60 and 90: use this so the
. Polynomial doesn't blow up at 90 or 0 degrees

P eI e TN o

pie=m*legpol2(i)/dsin(inc_ang*pi1/180.)
endif
if (i.gt.0) then
¢ = (cec**p/(fi*(fit+1.))
ba(i)=-c*pie
aali)=c*tau
endif
180 continue
That ends the Calculation for the Legendre Polynomials
for each value of m. The incident field coefficients
for the TE case are stored in aa(i) and ba(i); the TM
case will be done later by flipping the TE coefficients

O o 00

o

. Now to find the rest of the matrix in C(n,m)np. For each

. value of m that is greater than 0, say 1, we can find the

. matrix C(n,1)np and store that into cuplom(n,np); then

. the next iteration of m, i.e. m=2, we can find C(n,2)np

. by already having C(n,1)np stored in the matrix cuplom(n,np)

O O o0 o0 0

if (m.gt.0) then
do 155, n=m-1,2*nbg-m+1
do 154, np=m-1,2*nbg-m+1
cuploml(n,np)=cuplom(n,np)
154 continue
155 continue

A-13

do 160 n=m,2*nbg-m
fn=dfloat(n)
do 159 np=m.2*nbg-m
fnp=dfloat(np)
c=dsqrt((fnp-m+1.)*(fnp+m)*(2.*fnp+1.))*cuplom1(n,np)
cuplom(n,np)=c
c=xd*dsqrt((fnp-m+2.)*(fnp-m+1.)/(2.*fnp+3.))
cuplom(n,np)=cuplom(n,np)-c*cuploml(n,np+1)
c=xd*dsqrt((fnp+m)*(fnp+m-1.)/(2.*fnp-1.))
cuplom(n,np)=cuplom(n,np)-c*cuploml1(n,np-1)
c=dsqrt((fn-m+1.)*(fo+tm)*(2.*fnp+1.))
cuplom(n,np)=cuplom(n,np)/c
159 continue
160 continue
endif

. Cuplom(n,np) now has the most recent values
. for the most recent value of m. Note that

. we didn't find C(n,0)np because we already

. have those values stored in the cuplom matrix

aO o 00

[¢]

¢ . Now that we have the matrix which contains the C(nm)np .
¢ . we can go ahead and find the vector translation coefficients .

¢ . A(n,m)np and B(n,m)np

do 190 n=m.nbg
pie=0.0
tau=0.0
do 195 np=m,nbg
fnp=dfloat(np)
tau=(fnp-m+1.0)*(fnp+m+1.0)
tau=tauw/((2.*fnp+1.)*(2.*fnp+3.))
tau=dsqrt(tau)
TransA=-xd/(fnp+1.0)
TransA=TransA*tau*cuplom(n,np+1)
TransB=0.0
if (np.gt.0) then
pie=(fnp-m)*(fop+m)
pie=pie/((2.*fnp-1.)*(2.*fnp+1.))
pie=dsqrt(pie)
=-xd*pie*cuplom(n,np-1)/fnp
TransA=TransA+c
TransB=-ccc*xd*m*cuplom(n,np)/(fnp*(fnp+1.))

A-14

endif
TransA=cuplom(n,np)+TransA
TransAm(n,np)=TransA
TransBm(n,np)=TransB
195 conunue
190 continue

numel=nbg-m+1
numtot=numel+numel
do 220 n=m,nbg
i=n-m+1
do 215 np=m,nbg

. The Q's have the index of the inclusion k2 inside them

. and the TransAm and TransBm have the displacement d inside
. them; matrixlu therefore is the 1st to contain both pieces

. of information.

[N ST ¢ 2NN ¢

factl=dzeta_o(n)*(zeta2_1(n)+Q_r(np)*zetal_1(n))

fact2=zeta_o(n)*(dzeta2_ 1(n)+Q _r(np)*dzetal 1(n))

fact3=dzeta_o(n)*(zeta2_1(n)+Q_s(np)*zetal_1(n))

factd=zeta_o(n)*(dzeta2 1(n+Q_s(np)*dzetal_1(n))
i=np-m+1

c=TransAm(np,n)*(kO*fact! - k1*fact2)
matrixlu(i,ii)=c
matrix(i,il)=c

c=TransBm(np,n)*(kO*fact3 - k1*fact4)
matrixiu(i,ii+numel)=c
matrix(i,ii+numel)=c

c=TransBm(np,n)*(k1*factl - kO*fact2)
matrixlu(i+numel,ii)=c
matrix(i+numel,ii)=c

c=TransAm(np,n)*(k1*fact3 - kO*fact4)
matrixlu(i+numel,ii+numel)=c
matrix(i+numel,ii+numel)=c

215 continue

220 continue

A-15

¢ . Now we can load up the solution vectors aa(n) and ba(n)
¢ . and start the LU Decomposition to get t(n) and u(n)
¢ . Note that aa(n) and ba(n) contain the incident angle

do 226 n=m.nbg
1=n-m+1
c=dzeta_o(n)*psi_o(n)
¢ =kl1*(c - dpsi_o(n)*zeta_o(n))
b(i)=aa(n)*c
b(i+numel)=ba(n)*c
bd(i)=b(1)
bd(i+numel)=b(i+numel)
226 continue
1=isiz2
call ludemp(matrixlu,numtot,ii,indx.dd)
call lubksb(matrixlu,numtot,ii,indx,b)
call mprove(matrix,matrixlu,numtot,ii,indx,bd,b)
do 227 n=m.nbg
=n-m+1
TintTE(m,n)=b(i)
UintTE(m,n)=b(i+numel)
227 continue

[| il J
L T L

U T S T T O O O §
SLL S LALLM B B

U N SNV TR T N U AU S S A S N DN U N YU N Y 0 O " S W
| S S A R N T D ER A I SN SN D D SR A N RN I NN SR NN A S U NN N N NN L U N |

c
¢ . Now we must find the Scattering coefficients CscaTE and DscaTE,
¢ . and from these coeff we can determine the scattering matrices.

do 250 n=m.nbg

sumnl1=0.0

sum2=0.0

do 260 np=m,nbg
factl=dzeta2 1(n)+Q _r(np)*dzetal 1(n)
factl=TransAm(np,n)*TintTE(m,np)*factl
fact2=dzeta2 1(n)+Q_s(np)*dzetal 1(n)
fact2=TransBm(np,n)*UintTE(m,np)*fact2
suml=factl+fact2+suml
fact3=zeta2 1(n)+Q_r(np)*zetal_1(n)
fact3=TransBm(np,n)*TintTE(m,np)*fact3
factd=zeta2 1(n)+Q_s(np)*zetal_1(n)
fact4=TransAm(np,n)*UintTE(m,np)*fact4
sum2=sum?2+fact3+fact4

A-16

260 continue
CscaTE(m,n)=(suml-aa(n)*dpsi_o(n))/dzeta_o(n)
DscaTE(m,n)=(sum2-ba(n)*psi_o(n))/zeta_o(n)

c print*,n,CscaTE(m,n),DscaTE(m,n)

250 continue

do 228 n=m,nbg
=n-m+1
c=dzeta_o(n)*psi_o(n)
¢ =k1*(c - dpsi_o(n)*zeta_o(n))
b(i)=ccc*ba(n)*c
b(i+numel)=ccc*aa(n)*c
bd(i)=b(1)
bd(i+numel)=b(i+numel)
228 continue
1i=isiz2
call lubksb(matrixlu,numtot,ii,indx,b)
call mprove(matrix,matri)du,numtot,ii,indx,bd,b)
do 229 n=m.nbg
=n-m+1
TintTM(m,n)=b(i)
UintTM(m,n)=b(i+numel)
229 continue

T S T RO T N DU N U S S | P |
L S L B L Tt T T

[1} TS TS W SO S T N O Ol 2
LI T S S A 0 L L S LIS SONL AL L B

c
¢ . Now we must find the Scattering coefficients CscaTM and DscaTM,
¢ . and from these coeff we can determine the scattering matrices.

do 251 n=m,nbg

sum1=0.0

sum2=0.0

do 261 np=m,nbg
factl=dzeta2 1(n)+Q_r(np)*dzetal_1(n)
fact1=TransAm(np,n)*Tint TM(m,np)*fact1
fact2=dzeta2 1(n)+Q_s(np)*dzetal_1(n)
fact2=TransBm(np,n)*UintTM(m,np)*fact2
suml=factl+fact2+suml
fact3=zeta2 1(n)+Q_r(np)*zetal_1(n)
fact3=TransBm(np,n)* Tint TM(m,np)*fact3
factd=zeta2 1(n)+Q_s(np)*zetal _1(n)
fact4=TransAm(np,n)*UintTM(m,np)*fact4
sum2=sum2-+fact3-+fact4

A-17

261 continue
CscaTM(m,n)=dpsi_o(n)*ccc*ba(n)
CscaTM(m,n)=(suml-CscaTM(m,n))/dzeta_o(n)
DscaTM(m,n)=ccc*aa(n)*psi_o(n)
DscaTM(m,n)=(sum2-DscaTM(m.n))/zeta_o(n)

c print*,n,CscaTM(m,n),DscaTM(m,n)

251 continue

do 510 n=1,nbg
tau=CscaTE(m,n)*dconjg(CscaTE(m,n))
tau=tau+DscaTE(m,n)*dconjg(DscaTE(m,n))
pie=CscaTM(m,n)*dconjg(CscaTM(m,n))
pie=pie+DscaTM(m,n)*dconjg(DscaTM(m,n))
x=n*(n+1.)*(tautpie)

s1=CscaTE(m,n)*dconjg(aa(n))
s1=s1+DscaTE(m,n)*dconjg(ba(n))
s2=CscaTM(m,n)*dconjg(ccc*ba(n))
s2=s2+DscaTM(m.n)*dconjg(ccc*aa(n)
s3=n*(n+1.)*(s2+sl)

if(m.eq.0) then
x=2.0*x
§3=-2.0%s3
else
x=4.0*x
$3=-4.0%s3
endif
gsca=qgsca +x
gext=qgext +dreal(s3)
510 continue
C ettt e eeeeeeeitteeaateeetteeeateeareeehteeeatreeaatea e eesae e e e st b et et e n et b e et b s e e raaaasbtaasneaas
¢ . That finishes one loop in m, now we move to the next m and repeat
c . the same procedure all over again, storing our internal results
c. into T te, U te, T tm, U_tm, and storing the scattering results
c. into C te, D _te, C_tm, D_tm.
C eossiutsasensnnesnrntaaaannsaanatsesnanaanntte ot oana s £ e a et R NR AR AL s SRR At s R n a2 R s 2R e s n e e
299 continue
Catrreeeeree e ssneeaae e e seee st e e e et e e neeesaneeesante s an s e e
¢ DONE!! The sum over m is now complete!!! .
Catrrreeeereee e rteeanseeeatee e e re e e et e e n e s et s e s e nn e e abne e e

A-18

c**

¢ COMMENT THIS BLOCK OUT IF YOU DON'T WANT TO FIND
¢ THE ASYMMETRY PAKAMETER. THIS FIND_G SUBROUTINE

gext=qext/cdabs(x0)**2
gsca=qsca/cdabs(x0)**2
qabs=qgext-qgsca

write(8,¥) real(distance),real(qext),real(qsca),real(qabs)

print*,'Qext, Qsca, Qabs=",gext,qsca,qabs

¢ IS VERY TIME CONSUMING

(@} (9}

O 0 0 o0 000606 00

li=isizel
alpha=inc_ang

gg=find_g(nbg,ii,alpha,CscaTE,DscaTE,CscaTM,DscaTM)

gg=gg/x0**2/gsca
print*, 'asym parameter =',gg

**

print*,

print*, '‘Done with the rough stuff, now to find the Mueller elements'
vk 5k 3k oK ok ok ok % ok 5k ok ok ok ok %k o ok 3k ok ok 3k 3k 3k ok sk ok ok 2k o ok 3k 3k ok ok 3 ok ok ok ok ok ok ok ok ok sk ok ok ok!

print*,

Here's the meat of the problem. We will calculate the amplitude

. scattering matrices for the fields that we've found. The angle

. theta is our observation angle. Num is the number of angles we

. want in determining the scattering intensity. The rest of this

. should look almost like the Mie Code found in Bohren and Huffman
. We have here 3 nested loops. The first one is to determine the

. angles we want to look at, the second one is the sum over m, and

. the third one sums over n.
_If we want to have the observation angle's resolution of 1 degree
_then set num=360, if we want finer resolution, let num be a bigger
. number such as 720 (to have resolution of 0.5degrees)

...

phi_o=dfloat(phi*pi/180.0)
i=0
d_ang=360.0/num
b_angle=inc_ang+180.
f angle=inc_ang
do 399 j=1,num+1
angle=d _ang*(j-1)
angledd=angle
if((angle.le.180.0).and.(angle.ge.0.0)) then
print*,'Obs ANGLE IS ',angle

A-19

P S T ST TTT T R P LA L 2L L 2L 2 L

O 0 00

305

if(angle.gt.180.0) then
angle=360.0-angle
phi=pi + phi_o
else
phi=phi o
endif
=i+l
s1 TE(i)=0.
s3TE(1)=0.
s2TM(1)=0.
s4TM(1)=0.

theta=angle*p1/180.
x=dcos(theta)

do 330 m=0.nbg
. The next few lines will calc the Legendre polynomial.
. at the angle theta .

mmm=m
call nplgndr(mmm,ii,isizel,legpol2,x)
mmm=m-+]
call nplgndr(mmm,ii,isizel,legpoll,x)
if (m.eq.0) then

do 305 jj=-2,1sizel

legpol(jj)=-legpol1 (1)
continue

else

mmm-=m-1

call nplgndr(mmm,ii,isizel,legpol,x)
endif

do 310 n=m,nbg

tau=sqrt((n+m+1.)*(n-m))*legpoll(n)

pie=tau

tau=-(tau-sqrt((n+m)*(n-m+1.))*legpol(n))/2.

if (dabs(x).gt.0.5) then
pie=pie+sqrt((n+m)*(n-m+1.))*legpol(n)
pie=pie*.5/x

else

A-20

pie=m*legpol2(n)/dsin(theta)
endif

¢ .Done with finding Tau and Pie!
¢ .Now to find the scattering amplitude S1,S2,83,and S4

ifact=(-ccc)**n
if(m.eq.0) then
fact1=DscaTE(0,n)*pie+CscaTE(0,n)*tau
fact2=CscaTM(0,n)*pie+DscaTM(0,n)*tau
fact3=CscaTE(0,n)*pie+DscaTE(0,n)*tau
fact4=DscaTM(0,n)*pie+CscaTM(0,n)*tau
sl=ifact*factl
s2=ifact*fact2
s3=ifact*fact3
s4=ifact*fact4
else
fact1=DscaTE(m,n)*pie+CscaTE(m,n)*tau
fact1=fact1*2.0*dcos(m*phi)
fact2=CscaTM(m,n)*pie+DscaTM(m,n)*tau
fact2=fact2*2.0*dcos(m*phi)
fact3=CscaTE(m,n)*pie+DscaTE(m,n)*tau
fact3=fact3*2.0*ccc*dsin(m*phi)
factd=DscaTM(m,n)*pie+CscaTM(m,n)*tau
fact4=fact4*2.0*ccc*dsin(m*phi)
s1=ifact*factl
s2=ifact*fact2
s3=ifact*fact3
s4=ifact*fact4
endif
sITE(i)=s1 TE(i)+sl
s2TM(1)=s2TM(1)+s2
s3TE(i)=s3TE(1)+s3
s4TM(i)=s4TM(i)+s4
310 continue

¢ . Finished summing over n, now need to
¢ . sum over m in order to have the complete .
¢ . solution for the Scat Amp Matrix
330 continue
sITE(i)=sI TE(1)
s2TM(1)=-ccc*s2TM(i)

A-21

s3TE(i)=-ccc*s3TE(1)
s4TM(1)=s4TM(1)

¢ . Done summing over m. Now we have one
. complete set of scat amp S(i)

(eI o]

4.

-+

-t

-+

4

. Lastly, we can now use the scattering amplitude matrix
. and solve for the Mueller Matrix elements. Once we have
. the MM. we have all the informations we need.

bl | 11
T LI

4

-+

+

+

YRR T TN U SO T U SNV VU HN OO SN AN SN VU AV G DN SO O U N OSSO AN S Ny
) SN0 BN B I S N M AN M SN S ER I RN R A N SN N N AN N D N I N N

do 410 j=1,4
mm(1,jj)=0.0
mmy(2,j1)=0.0
mm(3,3;)=0.0
mm(4,1)=0.0

410 continue

fact1=s1TE(i)*dconjg(sI TE(1))/2.
fact2=s2TM(i)*dconjg(s2TM(1))/2.
fact3=s3TE(i)*dconjg(s3TE(1))/2.
fact4=s4TM(i)*dconjg(s4TM(1))/2.
c=s2TM(i)*dconjg(s3TE(i))
cc=s1 TE(i)*dconjg(s4TM(1))
mm(1, 1)=dreal(fact1+fact2+fact3+fact4)
mm(1,2)=dreal(fact2-fact1-fact3+fact4)/mm(1,1)
mmy(1,3)=dreal(c + ccymm(1,1)
mm(1,4)=dimag(c -cc)/mm(1,1)

[|
T T

O o o o0 o

mm(2, 1)=dreal(fact2-fact 1 +fact3-fact4)
mm(2,2)=dreal(fact2+fact1-fact3-fact4)/mm(1,1)
mm(2,3)=dreal(c -cc)/mm(1.1)
mm(2,4)=dimag(c+cc)/mm(1,1)

fact1=s2TM(i)*dconjg(s4TM(1))
fact2=s1 TE(i)*dconjg(s3TE(1))
fact3=s1TE(i)*dconjg(s2TM(1))
fact4=s3TE(i)*dconjg(s4TM(i))
c=s2TM(i)*dconjg(s1 TE(1))
cc=s4TM(i)*dcomg(s3TE(1))
mm(3,1)=dreal(fact1+fact2)
mm(3,2)=dreal(fact1-fact2)/mm(1,1)
mm(3,3)=dreal(fact3+fact4)/mm(i,1)
mm(3,4)=dimag(c + cc)/mm(1,1)

fact1=s4TM(i)*dconjg(s2TM(i))

A-22

fact3=s1 TE(i)*dconjg(s2TM(1))
mm(4,1)=dimag(fact1-+fact2)
mm(4,2)=dimag(fact1-fact2)/mm(1,1)
mm(4,3)=dimag(fact3-fact4)/mm(1,1)
mm(4,4)=dreal(fact3-fact4)/mm(1,1)

| print* real(angledd),real(mm(1,1))

- write(8,*)int(angle),real(mm(1,1)),real(mm(1,2)),

+ real(mm(3,3)),real(mm(3,4))

endif
c ——
¢ This endif statement lets us select the angles we want to look at .
c
399 continue
LTSS O ST OIP PSPPSR PPPPPRP
¢ . Done with calculating the amplitude coefficients
U ST PR PR U RN RPPPPPPPP PP

print*, 'That is all, Folks! "'
999 close(4)
close(8)
stop
end

A-23

0.6328
0.525000
0.125
0.1000
1.550 0.0d-1
1.550 0.0d-1
0.0

20

0.0

This is the Input File

The free space wavelength (wavel)

The host radius in microns (radl)

radius of the inclusion (rad2)

center-center separation distance (note: d+rad2 <radl)
refractive index of host (m1)

refractive index of inclusion (m2)

incident angle of beam (inc_ang)

number of obs. angles between 0 and 360 (num)

angle phi (relative to plane)

A-24

DECLARE.DEF

. This is the declaration for the variables which will be
. used in the scattering program. All the arrays and other
. variables can be declared and changed in here.

o O 0 606 0 00

¢ The parameter *isize* is the physical dimension of the arrays. We
¢ should make it at least as big as nbg (suggest nbg+2). Also,

¢ you should make sure that the parameter nmax in the subroutines
¢ mprove and ludcmp should be at least 2*isize. If you don't care

¢ about the scattering matrix elements, set isiza=1; otherwise, set

¢ isiza=361 (one for each degree from 0 to 360 degrees).

parameter (isize=200, isiza=361)
parameter (isizel=isize+1)
parameter (isiz2=2*isize, isiz4=4*1size)

¢ For the MEDIUM, which in our case is just plain old air.
double precision besj_o(-1:isize),temp(-1:isize)
double precision psi_o(-1:isize).dpsi_o(-1:isize)
complex *16 hankel o(-1:isize),tempc(-1:isize)
complex *16 zeta_o(-1:isize),dzeta_o(-1:isize)

¢ For the HOST SPHERE, all the arrays need be at least nbg
complex *16 hankell _1(-1:isize)
complex *16 zetal _1(-1:isize),dzetal _1(-1:isize)
complex *16 hankel2 1(-1:isize)
complex *16 zeta2_1(-1:isize),dzeta2_1(-1:1size)

¢ For the INCLUSION SPHERE
complex *16 besj_2(-1:isize)
complex *16 psi_2(-1:isize),dpsi_2(-1:isize)
complex *16 hankell 2(-1:isize)
complex *16 zetal 2(-1:isize),dzetal_2(-1:isize)
complex *16 hankel2_2(-1:isize)
complex *16 zeta2_2(-1:isize),dzeta2_2(-1:isize)

¢ For the separation, and besj_d need be at least 4*nbg
complex *16 xd, besj_d(-1:isiz4)

¢ For the refractive indices and k-vectors

double precision m_rl,m r2,m il,m i2
complex *16 k0,k1,k2,x0,x1,x2,x3,m 1 ,m 2

A-25

¢ For the Internal Coefficients
complex *16 TintTE(O:isizel,0:1sizel), UintTE(0:isizel ,0:isizel)
complex *16 TintTM(0:isizel,0:isizel), UmntTM(0:isizel,0:isizel)

¢ For the SCATTERING
complex *16 CscaTE(0:1sizel,0:1s1zel),DscaTE(0:1sizel,0:1sizel)
complex *16 CscaTM(0:isizel,0:1sizel),DscaTM(0:1s1zel,0:1s1ze1)
complex *16 Q r(0:1size),Q_s(0:isize)
complex *16 sl TE(isiza),s2TM(isiza),s3TE(isiza),s4 TM(isiza)
complex *16 s1,s2,53,s4,suml,sum?,factl,fact2 fact3,fact4

¢ For the NORMALIZED ASSOCIATED LEGENDRE POLYNOMIALS
double precision legpol(-2:isizel),legpoll (-2:isizel)
double precision legpol2(-2:isizel), tau,pie
double precision inc_ang,x

¢ For the TRANSLATION COEFFICIENTS
complex *16 cuplo(-1:isiz4), cuplo1(-1:isiz4)
complex *16 cuplom(0:isiz2,0:isiz2), cuplom1(0:isiz2,0:1s1z2)
complex *16 TransA,TransB, TransAm(0:isize,0:1size)
complex *16 TransBm(0:isize,(:isize)
complex *16 c.cc.ccc.ifact

¢ For the MATRICES IN THE LU_DECOMPOSTION
dimension indx(isiz2)
complex *16 matrix(isiz2,isiz2), matrixlu(isiz2,1s1z2)
complex *16 b(isiz2),bd(isiz2),aa(0:isize),ba(0:1size)

¢ MUELLER MATRIX
double precision mm(4.4)

A-26

O o0 0 oo

o

o

o o0 o0 o0

**

k% kkkkkkkk THESE ARE THE SUBROUTI‘NES ok 3 3 o ok ok ok ok %k %k 3k ok %k %k ok k

**

subroutine bessel(n,np,bessj.x)
subroutine to calculate spherical bessel functions of the first
kind from order -1 to order n, the result is stored in the array
bessj. n is related to the size parameter (nbg), and np is the
.physical dimension of the bessj array (isize). xisa real argument .

..

implicit double precision (a-h.0-z)
parameter(iacc=500,bigno=1d100,bigni=1d-100)
integer n,np

double precision bessj(-1:np),X,xX,pi

double precision bjp,bj,factor,ax

pi=1.0
pi=4.*datan(pi)
xx=x-2*pi*int(x/2./pi)
if (n.1t.3) then

n=3
endif

..

_If x is less than n, we must use the downward recurrence relation,
_otherwise our results for bessj will be unstable. In fact, we will
_use the downward alot more than the upward because our x will
_often be less than n, i.e. the size parameter is less than the order
if (x.1t.n) then
=dabs(x)
axx=x-2*pi*int(ax/2./pi)
if (ax.eq.0) then
bessj(0)=1.
do 10i=1,n
bessj(1)=0.

10 continue

else
m=2*((n+int(sqrt(float(iacc*n))))/2)

¢ . m is the highest order to calculate; the higher m is
¢ . the more accuracy we'll get, but we'll keep n terms .

...

do 15 3=0,n

bessj(j)=0.
continue

bjp=0.

bj=1.

do 20 j=m,1,-1
bim=(2.*j+1.)/ax*bj-bjp
bjp=bj
bj=bjm
if(dabs(bj).gt.bigno) then

[
N

bj=bj*bigni
bjp=bjp*bigni
do 17 1=0.n
bessj(i)=bessj(i)*bigni
17 continue
endif
if (j.le.n) bessj(j)=bjp
20 continue
bessj(0)=b;
sum=0.
do 25 j=0,n
sum=sum-+(2.*j+1.)*bessj(j)*bessj(j)
25 continue
do 30 j=0.n
bessj(j)=bessj(j)/dsqrt(sum)
if (x.1t.0.and.mod(n,2).eq.1) bessj(j)=-bessj(j)
30 continue
bessj(-1)=dcos(xx)/x
endif
else

bessj(-1)=dcos(xx)/x
bessj(0)=dsin(xx)/x
do 40 i=0,n-1
bessj(i+1)=bessj(i)*(2.*i+1.)/x-bessj(i-1)
40 continue
endif
return
end

A-28

IS 3K 3k % % ok % 3 ok sk oK ok ok ok % 3k ok 3k 3k ok ok 3k 3k 3k 3k 3k ok ok ok ok ok ok ok ok ok ok ok sk sk skok sk ok sk sk sk sk sk ok ok ok ok

subroutine ¢_bessel(n,np,bessj,x)

(@]

.subroutine to calculate complex spherical bessel functions of the .
first kind from order -1 to order n. The result is stored in array
Jbessj. This is just like the bessel function, except we now have
.complex arguments, i.e. X is a complex variable

o O o0 6

parameter(iacc=500,bigno=1d100,bigni=1d-100)

implicit double precision (a-h,0-2)
double precision pi,xx
integer n.np
complex ¥16 x.xxxx,sum
complex *16 bessj(-1:np)
complex *16 bjp,bj,factor,bjm

if (n.1t.3) then
n=3
endif

xx=cdabs(x)

pi=1.0

pi=4.*datan(pi)

XXXX=X

if (xx.gt.32760) then
XXxx=x-2*pi*int(x/2./p1)

endif

if (xx.1t.n) then

if (xx.eq.0) then
bessj(0)=1.
do 10 =1,n
bessj(i)=0.
10 continue
else
m=2*((n+int(sqrt(float(iacc*n))))/2)
do 15 j=0.n
bessj(j)=0.
15 continue
bjp=dcmplx(0.d0,0.)

A-29

bj=dcmpix(1.d0,1.)

do 20 =m,1,-1
bjm=(2.*j+1.)/x*bj-bjp
bjp=bj
bj=bjm
xxx=cdabs(bj)
if(xxx.gt.bigno) then

bj=bj*bigni
bjp=bjp*bigni
do 17 i=0,n
bessj(1)=bessj(i)*bigni
17 continue
endif
if (j.le.n) bessj(j)=bjp
20 continue
bessj(0)=bj
sum=0.
do 25 j=0,n
sum=sum-+(2.*j+1.)*bessj(j)*bessi(1)
25 continue
do 30 j=0,n
bessj(j)=bessj(j)/cdsqrt(sum)
30 continue
bessj(-1)=cdcos(xxxx)/x
endif

bessj(-1)=cdcos(xxxx)/x
bessj(0)=cdsin(xxxx)/x
do 40 i=0.n-1
bessj(i+1)=bessj(i)*(2.*i+1)/x-bessj(i-1)
40 continue

endif

return

end

A-30

o 0O 06 oo

(¢}

c
C
C

sk ok ok ok 3k 3 ok ok 3k 3k ok ok ok ok ok ok ok oK ok ok ok ok ok ok sk ok ok sk sk sk sk sk skok sk ks ok sk ok sk kR ok ok ok ok k kok ok

subroutine newman(n,np,bessy,x)
subroutine to calculate the spherical bessel function of the
second kind (or Newmann function) from order -1
to order n; result stored in array bessy. bess_y is the common .
notation for the Newmann function.

implicit double precision (a-h,0-z)
integer n,np
double precision x,Xx,pi
double precision bessy(-1:np)

if (n.1t.3) then
n=3
endif
pi=1.0
pi=4.*datan(pi)
Xx=X-2.*pi*int(x/2./pi)

‘Must use this xx because it's a value between 0 and 2pi. and it .

.works as the argument for the sin and cos; if we just stuck in

X instead, it won't work.
bessy(-1)=dsin(xx)/x
bessy(0)=-dcos(xx)/X
bessy(1)=-dcos(xx)/x/x-dsin(xx)/x
do 10 1=2,n
bessy(i)=(2.*(i-1.)+1.)/x*bessy(i- 1)-bessy(i-2)

10 continue

(oI o TN ¢

return
end

**#*

subroutine ¢_newman(n,np,bessy,x)

_ subroutine to calculate the complex spherical bessel function
. from order 0 to order n, the result is stored in array bessy.
_This is the Newman function, aka, bessel function of order 2.

..

implicit double precision(a-h,0-z)

A-31

integer n,np
complex *16 x,xx,bessy(-1:np)
double precision pi

if (n.1t.3) then
n=3
endif
pi=1.0
pi=4.*datan(pi)
Xx=x-2.*pi*int(x/2./pi)
bessy(-1)=cdsin(xx)/x
bessy(0)=-cdcos(xx)/x
bessy(1)=-cdcos(xx)/x/x-cdsin(xx)/x
do 10i=2.n
bessy(i)=(2.*(i-1.)+1.)/x*bessy(i-1)-bessy(1-2)

10 continue

o 0 6

return
end

kkk¥rkEk¥

subroutine nplgndr(m.nbr.iisize.legpol.x)

...

. Calculate normalized ass. legendre pol. from =0 to nbr using value of
.-1<=x<=1 Note that everything here is double precision because other .
. wise we've got a runaway solution.

implicit double precision (a-h,0-z)
double precision x
integer m,nbr,iisize
double precision legpol(-2:iisize)
double precision pmm,somx2,fact,pll,pmmp1
mm=mod(m,2)*(-2)+1
m=abs(m)
do §i=-2,m
legpol(i)=0.
continue
pmm = 1.
if (m.gt.0) then
somx2=sqrt((1.-x)*(1.+x))
fact=1.
do 11 =l,m
pmm=-pmm*fact*somx2/sqrt(real(i))
fact=fact+2.

A-32

11 continue
do 110 i=m+1,2*m
pmm=pmnysqrt(real(i))
110 continue
| pmm=pmm*sqrt(2.*m+1.)
| endif
- legpol(m)=pmm*mm
if (nbr.gt.m) then
pmmp 1=x*sqrt(2.*m+3.)*pmm
legpol(m+1)=pmmp1*mm
endif
if (nbr.gt.m+1) then
do 12 ll=m+2.nbr
pli=x*sqrt(2.*¥1l-1.)*pmmp1
pll=pll-sqrt((l+m-1.)*(ll-m-1.)/(2.¥1l-3.))*pmm
pll=pl/sqrt((l-m)*(I+m)/(2.*1I+1.))
pmm=pmmp |
pmmp 1=pli
legpol(1)=plI*mm
12 continue
endif
m=m*mm
return
end

skkkkkkkkkkkkbkkkkkkkhkkkhkkkkkhkkkkkkkrrkbkkkrkR¥*

subroutine riccati(nbg,hval,zeta,dzeta,x)
integer nbg.i
complex *16 hval(-1:nbg),zeta(-1:nbg),dzeta(- 1 :nbg),x

zeta(-1)=x*hval(-1)
do 10 i=0,nbg
zeta(i)=x*hval(i)
dzeta(i)=x*hval(i- 1) -i*hval(i)
10 continue
returmn
end

A-33

c FkRFRERRRRFF Rk kk kR kokkk Rk kR kkkkkk Rk ok Rk R kkkkkkk Rk ok

subroutine ludcmp(a,n,np,indx.d)

¢ . given nxn matrix a with physical dim NP, this routine replaces it
¢ . by the LU decomposition of a rowwise permutation of itself. A and
¢ . nare input. A is output. INDX is an output vector which records the
¢ . row permutation effected by the partial pivoting; D is output

¢ . as +-1 depending on whether the number of row interchanges

¢ . was even or odd. This routine is used in combination with Lubksb

¢ . to solve linear equations or invert a matrix.

complex *16 tiny
parameter (nmax=150)

¢ . this nmax value should be at
¢ . least twice the value of nbg

complex *16 a(np,np),sum,cdum,vv(nmax),aamax
dimension indx(n)

tinv=demplx(1.0d-80.1.0d-80)
d=1.
do 12 =1.n
aamax=dcmplx(0.d0,0.)
do 11 j=1,n
if (cdabs(a(i,j)).gt.cdabs(aamax)) aamax=a(1,])
11 continue
if (cdabs(aamax).eq.0) pause 'singular matrix’
vv(i)=1./aamax
12 continue
do 19 =1l.n
do 14 i=1,-1
sum=a(i,j)
do 13 k=1,i-1
sum=sum-a(i,k)*a(k,j)
13 continue
a(i,j)=sum
14 continue
aamax=dcmplx(0.d0,0.)
do 16 i=j,n
sum=a(1,])
do 15 k=1,-1
sum=sum-a(i,k)*a(k,})
15 continue

A-34

a(i,j)=sum
cdum=vv(i)*sum
if (cdabs(cdum).ge.cdabs(aamax)) then
imax=i
aamax=cdum
endif
16 continue
if (j.ne.imax) then
do 17k=1,n
cdum=a(imax,k)
a(imax.k)=a(j,k)
a(j,k)=cdum
17 continue
d=-d
vv(imax)=vv(j)
endif
indx(j)=tmax
if(cdabs(a(j,j))-eq.0) a(j,j)=tiny
if (j.ne.n) then
cdum=1./a(j,j)
do 18 i=j+1,n
ali.p=alij*cdum
18 continue
endif
19 continue
return
end

c **

subroutine lubksb(a,n,np,indx,b)

(o]

_Solves the set of n linear equations A.X=B. Here A is input, not

_as the matrix A but rather as its LU decomp, from LUDCMP. INDX
. is input as the permutation vector returned by LUDCMP. B is input

. as the right-hand side vector B, and returns with the solution
Vector X. A,N,NP and INDX are not modified by this routine and

. can be left in place for successive calls with different right-hand
_sides B. This routine takes into account the possibility that B

. can begin with many zero elements, so it is efficient for use in

. matrix inversion.

G 0O 0O o006 00060

complex *16 a(np,np),b(n),sum
dimension indx(n)

A-35

1i=0
do 12 i=1,n
llI=indx(1)
sum=b(1l)
b(1)=b(1)
if (ii.ne.0) then
do 11 j=iLi-1
sum=sum-a(1,j)*b(j)
11 continue
else if (cdabs(sum).ne.0.) then
ii=i
endif
b(1)=sum
12 continue
do 14 i=n.1.-1
sum=b(1)
if (i.It.n) then
do 13 j=i+1,n
sum=sum-a(i,j)*b(j)

13 continue
endif
b(i=sum/a(i.1)
14 continue
return
end
c P Y LI LTt 2T 222 22 22222 222 2 2 2 2L 2 2 20 Lt
subroutine mprove(a,alud,n,np,indx,b,x)
LT D OO UURRO RO PP PP PPI P
¢ . improves a solution vector X of the linear set of equations A*X=B .
¢ . The matrix A. and the vectors B and X are input, as is the dim .
¢ .n. Also input is alud the ludcomp of A as returned by ludemp, and .
¢ . the vector indx also returned by that routine. On output, only
¢ . X is modified, to an improved set of values.
C e et e e e e e eeeeeeeaaeateeeaeratetesaareeeeeeaenraeeseastteeesesanttsseaanreeeanasaaeesart e e e e an e e e enes
parameter (nmax=150)
L3 SOOI PO OPPPPP:

¢ . all the values here should be the same as those
¢ . found in the ludcmp subroutine, eg nmax should .
. have the same numerical value as in ludcmp

complex *16 a(np,np),alud(np,np),b(n),x(n),sdp,r(nmax)
dimension indx(n)

A-36

o O 0o o0 00

(e}

do 12 =1l.n
sdp=-b(1)
do 11 j=I,n
sdp=sdp+a(i,j)*x(j)
11 continue
r(i)=sdp
12 continue
call lubksb(alud,n,np,indx,r)
do 13i=I,n
x(1)=x(i)-r(1)
13 continue
return
end

**

double precision function ﬁnd_g(nbg,nn,ang,cte,dte,ctm,dtm)
_This function will calculate the asymmetric parameter g which is .
_used in determining radiative transfer. 1t will call the subrou-
tine "rotation” and use the resulting values to calculate g
_Passed into this function are the values for nbg, nn = isize,
_the incident angle ang, and the 4 scattering amplitude coefficients .

integer nbg,nn

double precision ang

complex ¥16 cte(O:nn,O:nn),dte(O:nn,O:nn)

complex *¥16 ctm(O:nn,O:nn),dtm(O:nn,O:nn)

parameter (size=76)

. if nbg is bigger than this size value,

¢ . then change size to equal at least nbg. .

..

double precision t1,t2,fact,fn,asym_g,gg

complex *16 a(-size:size,O:size),b(-size:size,O:size),cc
complex *16 c(-size:size,O:size),d(-size:size,O:size),ccc
integer n,m

gg=0.0

ccc=dcmplx(0.0d0,1.0)

ij=size

print*,'nn,ij=',nn,ij

call rotation(a,b,c,d,nbg,ang,cte,dte,ctm,dtm,nn,ij)
do 10 n=0,nbg,!

A-37

do 20 mp=-n,n,1
m=mp
t1=m*dreal(a(m,n)*dconjg(b(m,n)) +c(m,n)*dconjg(d(m,n)))
fn=dfloat(n)
fact=(fn-m+1.)*(fn+m+1.)/(2.*fn+3.)/(2.*fn+1.)
fact=fn*(fn+2.)*dsqrt(fact)
cc=a(m,n)*dcomnjg(a(m,n+1))+b(m,n)*dconjg(b(m,n+1))
cc=cc+c(m,n)*dconjg(c(m,n+1))+d(m,n)*dconjg(d(m,n+1))
t2=fact*dreal(ccc*cc)
asym_g=4.%(t1+12)
gg = ggrasym g
20 continue
10 continue
find_g=gg
return
end

¢ dkkkkkkkkkkkkkRkkkkkkkkkkRkkkkkk Rk Rk k kR bk F kR h kKK

subroutine rotation(a,b,c,d,nbg,ang,cte,dte,ctm,dtm,nn,ij)

. This subroutine calculates the new rotated values of the scattering .
¢ . coeflicients C's and D's, and return these new values to the fuction.
c. find g to find the asym parameter g.

integer nbg,nn,jj

complex *16 a(-1j:1},0:1)),b(-1j:1},0:1))
complex *16 c(-1j:1},0:1j),d(-1j:13,0:1))

double precision ang

complex *16 cte(0:nn,0:nn),dte(0:nn,0:nn)
complex *¥16 ctm(0:nn,0:nn),dtm(0:nn,0:nn)

parameter (siz=200)

¢ . the parameter siz here must be at least .
¢ . twice the parameter size given in find g .

double precision factorial

double precision beta(-siz:siz,-siz:siz)

double precision t1,t2,t3,t4,fact,terml,term2
complex *16 suml,sum2,sum3,sum4,cl,c2,c3,c4
integer n,mp,m,iijj,i_high,i low

c print*,'angle='",ang
ang=-ang

A-38

do 10 n=0,nbg
c print* 'rotation n=",n
do 15 m=-n,n
a(m,n)=cmplx(0.0,0.0)
b(m,n)=cmplx(0.0,0.0)
¢(m,n)=cmplx(0.0,0.0)
d(m,n)=cmplx(0.0,0.0)
15 continue

¢ . For each value of n, we will find all possible values
¢ . of the BETA(m,mp), and find the resulting new scat-
¢ . tering coefficients a,b,c,d

do 20 mp=-n,n
do 30 m=-n,n

t1=factorial(n+mp)
t2=factorial(n-mp)
t3=factorial(n+m)
t4=factorial(n-m)
terml=ti+t2-t3-t14
term2=dexp(term1)
beta(mp,m)=dsqrt(term2)

suml=cmpix(0.0,0.0)

i low=0

if((-m-mp).gt.i_low) i_low=-m-mp

i_high=n-m

if((n-mp).lt.i_high) i_high=n-mp

if(i_low.gt.i_high) then

beta(mp,m)=0.0

else
do 40 jj=1_low,i_high,1
t1=factorial(n+m)
t2=factorial(n-mp-jj)
t3=factorial(m+mp+jj)
t4=t1-t2-t3
terml=dexp(t4)

t1=factorial(n-m)
t2=factorial(jj)
t3=factorial(n-m-jj)
t4=t1-12-13
term2=dexp(t4)

A-39

i=n-m-jj
1i=mod(ii,2)
if(ii.eq.0)then
fact=1.0
else
fact=-1.0
endif
if(term1.gt.1.d200.or.terml.1t.1.d-200)then
print*,'mp,m, beta=",mp,m,beta(mp,m)
stop
endif
1i=2*jj+mp+m
t3=(dcosd(ang/2.))**1
11=2*n-2*})-mp-m
t4=(dsind(ang/2.))**u
suml=suml-+(terml*term2)*fact*t3*t4
40 continue
endif
beta(mp,m)=beta(mp,m)*suml

¢ . That's one value of m computed for .
¢ . each given value of mp

e e e e et ea e e rnraneaanan
30 continue
20 continue

C et e et eeeeerettaaeeenea——tetaraaatera—aaertaaaaeaeranasenaniiene

¢ . There! We've just finished calculating all the
¢ . possible values of BETA(mp.m) for each given .
¢ . value of n.

¢ . Now to find the new values for the scattering
¢ . coefficients, using the BETA that we've just found

do 50 mp=-n,n,1
suml=cmplx(0.0,0.0)
sum2=cmplx(0.0,0.0)
sum3=cmpix(0.0,0.0)
sumd=cmplx(0.0,0.0)
666 do 60 m=-n,n,1
if(m.le.0) then
1i=abs(m)
if(mod(ii,2).eq.0) then
cl=cte(ii,n)

A-40

c2=-dte(ii,n)
¢3=-ctm(ii,n)
c4=dtm(ii,n)
else
cl= -cte(ii,n)
c2= dte(ii,n)
¢3= ctm(ii,n)
c4= -dtm(ii,n)
endif
else
cl=cte(m,n)
c2=dte(m,n)
c3=ctm(m,n)
c4=dtm(m,n)
endif
sum] = suml+c1*beta(m,mp)
sum?2 = sum2+c2*beta(m,mp)
sum3 = sum3+c3*beta(m,mp)
sum4 = sumd+c4*beta(m,mp)
60 continue

¢ . These a.b.c.d are now the new values of the scattering .
c . coefficients after the rotation

a(mp,n)=suml
b(mp,n)=sum2
¢(mp,n)=sum3
d(mp,n)=sum4
50 continue
10 continue
return
end

c e e T P PP T T T P PR RS 2L ST 2L 2L S L AL S L L LAttt

double precision function factorial(n)
integer n

integer loop

double precision sum

¢. Since n can be a huge number (like 190) we will take .
c. the log of the factorial, so the machine won't blow
c.up. eg. 10! will be logl0+log9+log8+...logl

10

99

sum=0.0
if (n.1t.0) then
print*,'ERROR! value less than zero!'
print* 'value=",n
stop
endif
if (n.gt.1) then
do 10 loop=1,n
sum=sum + dlog(dfloat(loop))
continue
factorial=sum
else
factorial=0.0
endif
return
end

A-42

